Examen

L'épreuve dure trois heures. Ni documents, ni calculatrices, ni téléphones.

Exercice 1. On considère l'espace de probabilité ($[0,1[,\mathcal{B},\lambda)$, où \mathcal{B} est la tribu borélienne de [0,1[et λ est la mesure de Lebesgue. On fixe un paramètre $\alpha>0$. Pour tout $n\geqslant 0$, on pose

$$X_n = (n+1)^{\alpha} \mathbf{1}_{\left[0, \frac{1}{n+1}\right[}.$$

Pour tout $n \ge 1$, on note

$$\mathscr{F}_n = \sigma(X_0, \dots, X_n).$$

1. Pour tout $n \ge 0$, écrire la partition de [0,1[qui engendre la tribu \mathscr{F}_n . Combien d'éléments a la tribu \mathscr{F}_n ? A-t-on l'égalité

$$\mathscr{B} = \sigma \bigg(\bigcup_{n \geqslant 0} \mathscr{F}_n\bigg)?$$

- 2. Calculer, pour tout $n \geq 0$ et tout $p \in [1, \infty[$, la norme L^p de X_n , c'est-à-dire $\mathbb{E}[|X_n|^p]^{\frac{1}{p}}$. Pour quels $p \in [1, \infty[$ la suite $(X_n)_{n \geq 0}$ est-elle bornée dans L^p ?
- 3. Montrer, pour tout $n \ge 0$, que l'espérance conditonnelle $\mathbb{E}[X_{n+1}|\mathscr{F}_n]$ existe, et la calculer. Déterminer, en fonction de α , si la suite $(X_n)_{n\ge 0}$ est une martingale, une sous-martingale, une sur-martingale.
- 4. Étudier la convergence presque sûre et, pour tout $p \in [1, \infty[$, la convergence dans L^p de la suite $(X_n)_{n \ge 0}$.
- 5. Soit $p \in]1,\infty[$. Est-il vrai qu'une sous-martingale bornée dans L^p converge dans L^p ?

Exercice 2. Sur un espace de probabité filtré $(\Omega, \mathscr{F}, (\mathscr{F}_n)_{n\geq 0}, \mathbb{P})$, soit $(X_n)_{n\geq 0}$ une surmartingale positive. On pose

$$T = \inf\{n \geqslant 0 : X_n = 0\}.$$

- 1. Rappeler la définition d'un temps d'arrêt et montrer que T est un temps d'arrêt.
- 2. Montrer que pour tout $n \ge 0$, on a

$$\mathbb{P}(X_n \mathbf{1}_{\{T \leqslant n\}} = 0) = 1.$$

3. Calculer la probabilité qu'il existe des entiers m et n avec $m \ge n$ et tels que $X_n = 0$ et $X_m > 0$.

Exercice 3. Dans une boîte se trouvent un certain nombre de boules qui peuvent être rouges ou bleues. On répète indéfiniment l'opération qui consiste à tirer une boule de la boîte au hasard et à l'y replacer en ajoutant une boule de la même couleur. Ainsi, si on a tiré une boule rouge, on replace deux boules rouges dans la boîte; et si on a tiré une boule bleue, on y replace deux boules bleues.

À chaque instant, on décrit l'état de la boîte par un couple (r, b) d'entiers, où r est le nombre de boules rouges et b le nombre de boules bleues dans la boîte. On notera dans ce qui suit $\mathbb{N}^2_* = \mathbb{N}^2 \setminus \{(0,0)\}$.

- 1. Décrire un noyau markovien, qu'on notera P, sur \mathbb{N}^2_* qui rende compte de l'expérience décrite ci-dessus.
- 2. Le noyau markovien P est-il irréductible sur \mathbb{N}^2_* ? Quels sont ses états récurrents? Ses états transients? Le noyau P admet-il une mesure invariante?

On note $(\Omega, \mathscr{F}, (\mathscr{F}_n)_{n\geq 0}, (\mathbb{P}_{(r,b)})_{(r,b)\in\mathbb{N}^2_*}, X=(X_n)_{n\geq 0}=(R_n,B_n)_{n\geq 0})$ une chaîne de Markov de noyau de transition P sur \mathbb{N}^2_* . Ainsi, à chaque instant $n\geq 0$, R_n et B_n sont respectivement le nombre de boules rouges et le nombre de boules bleues dans la boîte.

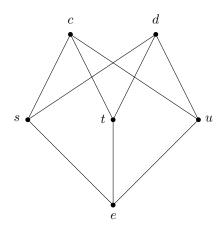
3. Soit (r,b) un élément de \mathbb{N}^2_* . Pour tout $n \geq 0$, on pose

$$M_n = \frac{R_n}{r + b + n},$$

qui est la proportion de boules rouges dans la boîte au temps n. Montrer que sous la mesure $\mathbb{P}_{(r,b)}$, la suite de variables aléatoires $(M_n)_{n\geqslant 0}$ est une martingale par rapport à la filtration $(\mathscr{F}_n)_{n\geqslant 0}$.

Que peut-on dire du comportement asymptotique de la suite de variables aléatoires $(M_n)_{n\geqslant 0}$ sous $\mathbb{P}_{(r,b)}$?

Exercice 4. On considère la marche au hasard sur le graphe suivant :



qu'on étudie comme une chaîne de Markov sur l'espace d'états $\{e, s, t, u, c, d\}$.

1. Cette chaîne de Markov est-elle irréductible? Quels sont ses états récurrents?

- 2. Déterminer toutes les mesures invariantes de cette chaîne de Markov.
- 3. Entre deux visites en t, combien de fois la chaîne de Markov passe-t-elle, en moyenne, en $c\,?$
 - 4. Partant de u, combien de temps la chaîne met-elle, en moyenne, à revenir en u?
- 5. Calculer la probabilité, partant d'un sommet arbitraire x, de visiter u avant de visiter s.
 - 6. Partant de e, combien de temps la chaîne met-elle, en moyenne, à atteindre d?

— Fin du sujet -	
------------------	--