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CHAPTER 1

Products of random 2× 2 matrices

1. Foreword: products of IID random variables and matrices

The focus of this chapter is on the n → ∞ asymptotic behavior of products of
the form YnYn−1 . . . Y1 or Y1 . . . Yn−1Yn when Y1, Y2, . . . are IID real random matrices,
and we will limit ourselves to two by two matrices. We stress that by this we do not
mean that the entries of Y1 are independent random variables: they can be, but we
will actually consider very general joint laws of the entry of the matrices.

By behavior of products of matrices we may mean several things: for example
behavior of the entries, behavior of a norm of the matrix product, behavior of the
matrix product when applied to a given vector (again, we can take the norm, or look
at the components). The first and, in a sense, most important case is considering
a norm of the matrix (we will see that which norm we choose is irrelevant). In fact
we will consider the limit of

1

n
log ‖YnYn−1 . . . Y1‖ , (1.1)

and we will show that, under suitable assumptions, the limit exists a.s. and in L1.
In this case, the limit is not random and does not depend on the norm: we suggest
to check the norm independence (use that norms on finite dimensional spaces are
equivalent). The value of the limit is called top Lyapunov exponent and, in these
notes, is denoted by γ. Of course, it just depends on the law of Y1. We will see also
that the limit is the same if we consider the product Y1Y2 . . . Yn instead.

Before looking at the case of matrices, it is natural to quickly review the case
of scalars: if Y1, Y2, . . . are IID real random real numbers (variables). In this case
Kolmogorov’s Law of Large Numbers tells us that

lim
n→∞

1

n
log |Y1Y2 . . . Yn| = E [log |Y1|] , (1.2)

a.s. if and only if E [|log |Y1||] < ∞. The convergence holds also in L1. From this
result, with a cut-off argument, one easily extracts also that the limit exists a.s. also
under the weaker hypothesis that E

[
log+ |Y1|

]
<∞, respectively E

[
log− |Y1|

]
<∞,

except that the limit is going to be −∞ unless also the expectation of the negative
part is finite (respectively: the limit is going to be +∞ unless also the expectation
of the positive part is finite).

The situation with matrix products is more involved, but it is well understood.
Nevertheless, the result has a fundamental difference with respect to the case of
products of random variables: the limit γ is much less explicit than what we have
in (1.2). We will show that the limit can be expressed in terms of the invariant
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4 1. PRODUCTS OF RANDOM 2× 2 MATRICES

probability of a suitable positive recurrent Markov chain on a continuum space.
Except for a few very particular cases (most of them rather pathological), one cannot
make this invariant probability explicit.

It is however rather easy to compute with very high precision Lyapunov ex-
ponents: so we look at a couple of particular cases from the numerical viewpoint
before putting the hands on the theory, also to highlight phenomena that are rather
surprising.

A first example. Consider for a > 0 the matrices

M1 = M1(a) := a

(
1 1/5
0 1

)
and M2 = M2(a) := a

(
1 0
3 1

)
, (1.3)

and, given (Xj)j=1,2,... IID Bernoulli random variables of parameter 1/2 (fair coin
tossing), we define Yj := XjM1 + (1−Xj)M2.
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Figure 1. The case in which we select M1(1) and M2(1), given in (1.3), by fair
coin tossing (qualitatively the result would be the same also if the coin was biased,
as long as not totally biased!): see the definition of (Yj) right below (1.3). We
plot the logarithm of the operator norm of YnYn−1 . . . Y1 as a function of n, up to
n = 150 (the norm on R2 is the Euclidean norm). One can of course go to a much
larger value of n and estimate that the Lyapunov exponent γ is equal to 0.32 . . ..
In particular, exp(γ) > 4/3. We do not discuss here numerical methods and how
to control errors.

Of course both M1(a) and M2(a) have (both) eigenvalues equal to a: so we
start by remarking that, in view of what we remarked numerically in the caption of
Figure 1, if we choose a ∈ [3/4, 1) we are are going to have that γ > 0, i.e. that
‖YnYn−1 . . . Y1‖ tends to infinity exponentially fast, even if ‖M1(a)n‖ and ‖M2(a)n‖
tend to zero (exponentially fast). This is (in my view) an instance of what is now of-
ten called Parrondo’s paradox (but the phenomenon in random matrices was known
since much earlier): that one can win by switching randomly (or also periodically)
between two loosing game strategies.

We have mentioned that ‖YnYn−1 . . . Y1‖ and ‖Y1Y2 . . . Yn‖ behave in the same
way, at least in the sense of Laplace asymptotic behavior. But (YnYn−1 . . . Y1)n and
(Y1Y2 . . . Yn)n are very different processes! In fact:
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• (YnYn−1 . . . Y1)n is really a random walk on the matrices! Even simpler and more
useful: consider (

xn
yn

)
:= YnYn−1 . . . Y1

(
x0

y0

)
, (1.4)

for example for x0 > 0 and y0 > 0. Then also (xn, yn) is a point in the first quad-
rant and (x0, y0), (x1, y1), . . . is a (time homogeneous) Markov chain on (0,∞)2. It
is actually an elementary exercise to see (arctan(yn/xn))n is a Markov chain too,
this time on (0, π/2). We will see that the most important feature of the random
walk (YnYn−1 . . . Y1)n is captured by the Markov chain (arctan(yn/xn))n. We plot
in Figure 2 a numerical approximation of the invariant measure of this Markov
chain. So (arctan(yn/xn))n oscillates wildly! And (YnYn−1 . . . Y1)n is even wilder
(because it grows too).
• (Y1Y2 . . . Yn)n is not at all a random walk: we already know that it grows, but

in fact it grows in one specific (random) direction. Once again, this can be un-
derstood much better by applying the matrix to a fixed vector (x0, y0) and by
considering the arising (xn, yn) – note that in the previous item (xn, yn) denoted
a different process – as we can appreciate by looking at Figure 3 where we plot
(arctan(yn/xn))n. We insist that this is not a Markov process.
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Figure 2. The invariant measure of the Markov process (2 arctan(yn/xn)/π)
plotted by letting the process run up to n = 107. The roughness is probably not
due to numerical limitations: the measure does not appear to have a smooth

density.

Remark 1.1. In spite of the fact that the invariant probability may not have a
smooth density, see Fig. 2, the situation for the choice (1.3) is definitely much better
than what we have for example with the choice

M1 :=

(
1 1
0 1

)
and M2 := a

(
1 0√
3 1

)
. (1.5)

In fact, it is easy to realize that M1 maps the first quadrant to the sector of the first
quadrant with angle from 0 to π/4, while M2 maps the first quadrant to the sector
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Figure 3. Plot of five realizations of the process (2 arctan(yn/xn)/π) in the
case in which we are considering Y1Y2 . . . Yn, so the process is not Markovian. It
converges very quickly to a random limit point. We will see that in this particular
case the law of this invariant limit point is the invariant measure that appears in
Fig. 2, but this is just an artefact of the symmetries of this specific example.

with angle from π/3 to π/2. So the invariant probability will not be supported on
the sector from π/4 to π/3. In fact, the support of the invariant probability is not
obvious.

1.1. A second example. We now consider

Mj :=

(
E + εUj −1

1 0

)
, (1.6)

with (Uj) an IID sequence of U(−1, 1) random variables. The eigenvalues of Mj are

equal to (E + εUj ±
√

(E + εUj)2 − 4)/2. They are complex conjugate and of norm
one if −2 < E+εUj < 2: this is the case of Fig. 4 and Fig. 5: once again we are in a
case in which none of the matrices in the ensemble grows when when multiplied by
itself, but the random product has positive Lyapunov exponent (we will prove this
in full generality, but it is readily appreciated from simulations)! One can of course
consider also the case |E + εUj| > 2 in which one of the two eigenvalues is larger
than one, and the other are smaller (their product is equal to 1). Also in this case
the Lyapunov exponent is positive, but this is less surprising.

2. Products of IID random matrices: the top Lyapunov exponent

Let (Yk) = (Yk)k∈N be an IID sequence of random matrices with real entries on
the space (Ω,F,P). We assume that Y1 is almost surely in GL2 := GL2(R), that is
P(det(Y1) 6= 0) = 1, where det(·) is the determinant of ·. We use M2 := M2(R) for
the set of all 2× 2 matrices with real entries. Our minimal assumption is that

E
[
log+ ‖Y1‖

]
<∞ . (1.7)

‖ · ‖ is the operator norm on M2, i.e. ‖M‖ = supx:‖x‖=1 ‖Mx‖, and depends on

the norm ‖ · ‖ we choose of R2. Even if this will be a minor detail because of the
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Figure 4. Plot of the norm of the product in the case of (1.6), with E = 1.7
and ε = 0.1.

Figure 5. Invariant probability for the process considered in Fig. 4: once again
we plot the angle process times 2/π. In this case the matrices do not have non
negative entries so the invariant measure is supported also on negative angles.
Moreover, the invariant probability appears to have a rather regular density.

equivalence of the norms on R2, we make and keep the choice ‖x‖ :=
√
x2

1 + x2
2. So

‖M‖ is equal to the square root of the largest eigenvalue of the symmetric matrix
M∗M (M∗ is the transpose of M). Of course all the eigenvalues of M∗M are non
negative: 〈x,M∗Mx〉 = ‖Mx‖2 ≥ 0 and we have introduced 〈x, y〉 = x1y1 + x2y2

for the scalar product.
Since ‖ · ‖ is sub-multiplicative, i.e. ‖AB‖ ≤ ‖A‖‖B‖, and since the law of

(Yk+m)k∈N does not depend on m = 0, 1, . . ., we see that, with the notation Pn :=
Yn . . . Y1 for n ∈ N and P0 is the identity matrix, we have

E log ‖Pn+m‖ ≤ E log ‖Yn+m . . . Yn+1‖+E log ‖Yn . . . Y1‖ = E log ‖Pm‖+E log ‖Pn‖ .
(1.8)

This means that the sequence (E log ‖Yn . . . Y1‖)n is sub-additive. We can therefore
apply:
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Lemma 1.2. If (an) is a sequence of numbers in R∪{−∞} such that an+m ≤
an + am for every n,m ∈ N ∪ {0}, then the sequence (an/n) has a limit and

lim
n

an
n

= inf
n

an
n
∈ R ∪ {−∞} . (1.9)

We can now introduce:

Definition 1.3. We call

γ := lim
n

1

n
E log ‖Yn . . . Y1‖ ∈ R ∪ {−∞} , (1.10)

top Lyapunov exponent associated to the sequence (Yn). The limit coincides with
the infimum of the sequence.

We remark that, in our IID context, γ depends only on the law of Y1. It is
straightforward to see that it does not depend on the choice of the norm we have
chosen in R2, nor on the matrix norm (which may not be sub-multiplicative).

Now we aim at an analog of the strong law of large numbers. Namely, we want
to show that there is no need to take the expectation in (1.10). This result is an
immediate consequence of the probabilistic (or ergodic) version of Lemma 1.2 (i.e.,
Birkhoff sub-additive Ergodic Theorem), but we provide a self-contained approach
with which we will also develop a number of tools that will be useful later on. We
will nevertheless rely on the (additive) Birkhoff Ergodic Theorem, i.e. Theorem A.1.

The argument we present is based on the elementary observation that

log ‖Yn . . . Y1‖ = log
‖Yn . . . Y1‖
‖Yn−1 . . . Y1‖

+ log ‖Yn−1 . . . Y1‖

=
n∑
k=1

log
‖Yk . . . Y1Y0‖
‖Yk−1 . . . Y1Y0‖

,

(1.11)

where we have introduced Y0 which is the identity matrix.
This highlights the presence of a general structure: with G := GL2 and B :=

{M ∈M2 : ‖M‖ = 1} we set for M ∈ G and A ∈ B

σ (M,A) := log ‖MA‖ , (1.12)

so σ is an additive cocycle in the sense that for M1,M2 ∈ G and with the notation
M · A := MA/‖MA‖ we have

σ (M2M1, A) = σ (M2,M1 · A) + σ (M1, A) . (1.13)

In particular (1.11) can be rewritten as

σ (Yn . . . Y1, Y0) =
n∑
k=1

σ (Yk, Yk−1 . . . Y1 · Y0) , (1.14)

with Yk−1 . . . Y1 · Y0 = Y0 if k = 1.
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It is useful to introduce some probability notation: if µ is a probability on G
and ν a probability on B, then µ ? ν is the law of M ·A if M is a random variable
with law µ and A is a random variable with law ν, and M and A are independent.
More explicitly: for every f ∈ L∞(B;R)∫

B
f d(µ ? ν) =

∫
G

∫
B
f (M · A)µ( dM)ν( dA) . (1.15)

Note that in essentially the same way we can define also µ1 ? µ2 with µ1 and µ2

two probabilities on G. Moreover these definitions can be generalized to the case in
which G is a topological group that acts continuously on the topological space B.
We will always keep the choice G = GL2, but in the next sections we will work also
with a different space B.

We say that ν, probability on B, is µ−invariant, with µ a probability on G, if
µ ? ν = ν.

Proposition 1.4. (Yk)k∈N is an IID sequence of G valued random variables
with Y1 ∼ µ and ν is a µ-invariant law on B. Moreover σ : G × B → R is an
additive cocycle such that

∫
G

∫
B |σ(M,A)|µ( dM)ν( dA) <∞. Then the sequence(

1

n
σ (Yn(ω) . . . Y1(ω), A)

)
n∈N

(1.16)

converges P⊗ ν( d(ω,A))-a.s. and in L1(P⊗ ν).

Proof. This is a matter of showing that this statement is a direct consequence
of Birkhoff Ergodic Theorem (Theorem A.1). For this we work on the canonical
space GN instead of Ω. We set E := GN × B and we introduce the translation
operator θ : E → E defined by

θ
(
(Mk)k∈N , A

)
=
(
(Mk+1)k∈N ,M1 · A

)
. (1.17)

By using the independence assumptions and the fact that ν is µ-invariant we readily
see that θ preserves the probability µ⊗N⊗ν on E. Moreover, as pointed out in (1.11)-
(1.14), we have

σ (Mn . . .M1, A) =
n∑
k=1

σ (Mk,Mk−1 . . .M1 · A) =
n−1∑
k=0

F
(
θk ((Mj)j∈N, A)

)
,

(1.18)
where in the last step we have introduced the definition F ((Mk), A) := σ(M1, A).
By the Birkhoff Ergodic Theorem the proof is complete. �

We are now ready to state:

Theorem 1.5 (Furstenberg-Kesten). (Yk) are IID G-valued random vari-
ables and E log+ ‖Y1‖ <∞. Then limn(1/n) log ‖Yn . . . Y1‖ = γ P-a.s..
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Proof. The upper bound follows easily from the super-multicative property
of the matrix norm we use. In fact, choose p ∈ N and write n = mp + r with
r ∈ {0, . . . , p− 1}. Then

1

n
log ‖Yn . . . Y1‖ ≤

1

n

m−1∑
k=0

log ‖Yp(k+1) . . . Ypk+1‖+
1

n
log ‖Ymp+r . . . Ymp+1‖ . (1.19)

The superior limit of the second addendum in the right-hand side is non positive
because log ‖Ymp+r . . . Ymp+1‖ ≤

∑r
j=1 log+ ‖Ymp+j‖ and this last term vanishes a.s.

as n → ∞ because if (Xj) are IID real random variables with X1 ∈ L1, then
limnXn/n = 0 a.s.. We are left with the first term in the right-hand side of (1.19) to
which we can apply the Kolmogorov law of Large Numbers for IID random variables
and we obtain that a.s. for every p ∈ N

lim sup
n

1

n
log ‖Yn . . . Y1‖ ≤

1

p
E [log ‖Yp . . . Y1‖] . (1.20)

By taking the infimum over p we obtain that a.s.

lim sup
n

1

n
log ‖Yn . . . Y1‖ ≤ γ . (1.21)

We are left with the lower bound and for this we can and do assume γ > −∞,
otherwise there is nothing to prove.

Remark 1.6. We note that γ = infn(1/n)E log ‖Yn . . . Y1‖ ≤ E log ‖Y1‖ so
E log ‖Y1‖ > −∞, that is E| log ‖Y1‖| < ∞. In other terms, we could go ahead
in the proof assuming also that E log− ‖Y1‖ < ∞, but this does not seem to be of
much help. In any case, this remark contains the interesting information that, under
the assumption E log+ ‖Y1‖ <∞, γ = −∞ if and only if E log− ‖Y1‖ =∞.

Always with the convention that Y0 is the identity matrix, with m = δY0 (so m
is concentrated on the identity matrix) and with νn := (1/n)

∑n−1
k=0 µ

?k ?m we write

1

n
E log ‖Yn . . . Y1‖ =

1

n
E [σ (Yn . . . Y1, Y0)]

=
1

n

n−1∑
k=0

E [σ (Yk+1, Yk . . . Y1 · Y0)]

=
1

n

n−1∑
k=0

∫
G
E [σ (M,Yk . . . Y1 · Y0)]µ( dM)

=
1

n

n−1∑
k=0

∫
B

∫
G
σ (M,A)µ( dM)(µ?k ? m)( dA)

=

∫
B

∫
G
σ(M,A)µ( dM)νn( dA) .

(1.22)
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Now we remark that (νn) is a sequence of probability mesures on a compact space.
It is therefore a relatively compact sequence (for the standard convergence of prob-
ability measures) and, thanks to the Césaro mean structure of νn

µ ? νn = νn +
1

n
(µ?n ? m−m) , (1.23)

one readily sees that any limit point ν is µ-invariant.
Now we claim that for any limit point ν

σ ∈ L1(µ⊗ ν) and

∫
B

∫
G
σ(M,A)µ( dM)ν( dA) ≥ γ . (1.24)

This suffices to complete the proof because by Proposition 1.4 we know that
there exists an L1(µ⊗ ν) random variable (ω,A) 7→ Φ(ω,A) in L1(P⊗ ν) such that
a.s. and in L1

Φ(ω,A) = lim
n

1

n
log ‖Yn . . . Y1A‖ , (1.25)

so, in particular,
∫
B

∫
Ω

Φ(ω,A)P( dω)ν( dA) =
∫
B

∫
G σ(M,A)µ( dM)ν( dA) because

the P ⊗ ν expectation of what we are taking the limit of in the right-hand side of
(1.25) is equal for every n to

∫
B

∫
G σ(M,A)µ( dM)ν( dA) by the steps that are in

(1.22). But, since ‖A‖ = 1 ν-a.s., we have

1

n
log ‖Yn . . . Y1A‖ ≤

1

n
log ‖Yn . . . Y1‖ , (1.26)

so, by (1.21), we see the limit of the left-hand side in (1.26) is a.s. bounded by
γ. That is, almost surely Φ(ω,A) ≤ γ. But if we combine this with the second
statement in (1.24) we readily obtain that Φ(ω,A) = γ µ ⊗ ν-a.s.. Now it suffices
to combine (1.25) and (1.26) to obtain the desired lower bound:

γ
µ⊗ν-a.s

= lim
n

1

n
log ‖Yn . . . Y1A‖ ≤ lim inf

n

1

n
log ‖Yn . . . Y1‖ . (1.27)

En passant, we observe that this argument implies also that the inequality in the
second statement in (1.24) implies the equality.

We are left with the proof of the claim (1.24) and we proceed by considering first
σ+ and then σ−.

We introduce the map A 7→
∫
G σ+(M,A)µ( dM) from B to [0,∞). This map is

continuous (and therefore bounded too, because B is compact). In fact for every
M ∈ G we have that A 7→ ‖MA‖ is continuous and ‖MA‖ ≤ ‖M‖. Therefore
the non negative function A 7→ σ+(M,A) = log+ ‖MA‖ is continuous and bounded
above by log+ ‖M‖. By

∫
G log+ ‖M‖µ( dM) <∞ and the Dominated Convergence

we obtain that A 7→
∫
G σ+(M,A)µ( dM) is continuous. Therefore if νnj ⇒ ν we

have that

lim
j

∫
B

∫
G
σ+(M,A)µ( dM)νnj( dA) =

∫
B

∫
G
σ+(M,A)µ( dM)ν( dA) . (1.28)
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For the negative part we can apply the same argument if instead of working directly
with log−(·) we introduce a cut-off L > 0 to apply the Dominated Convergence:

lim
j

∫
B

∫
G

(σ−(M,A) ∧ L)µ( dM)νnj( dA) =

∫
B

∫
G

(σ−(M,A) ∧ L)µ( dM)ν( dA) .

(1.29)
Therefore

lim inf
j

∫
B

∫
G
σ−(M,A)µ( dM)νnj( dA) ≥

∫
B

∫
G

(σ−(M,A) ∧ L)µ( dM)ν( dA) ,

(1.30)
and the cut-off L can be removed by Monotone Convergence.

By putting together positive and negative parts we therefore reach

lim sup
j

∫
B

∫
G
σ(M,A)µ( dM)νnj( dA) ≤

∫
B

∫
G
σ(M,A)µ( dM)ν( dA) , (1.31)

but by (1.22) and Definition 1.3 the superior limit in the left-hand side is a limit
and it is equal to γ so

−∞ < γ ≤
∫
B

∫
G
σ(M,A)µ( dM)ν( dA)

≤
∫
B

∫
G
σ+(M,A)µ( dM)ν( dA) ≤ E

[
log+ ‖Y1‖

]
< ∞ . (1.32)

Therefore claim (1.24) is proven and the proof of Theorem 1.5 is complete. �

3. The Furstenberg formula

In this section we work with a different space B on which G = GL2(R) acts: B is
the projective space P (R2), i.e. for x ∈ R2 \ {0} there is a unique x = xR ∈ P (R2)
which we identify (∼=) also with x/‖x‖ ∼= −x/‖x‖. G acts on B as M · x = Mx ∼=
Mx/‖Mx‖. Of course given x there are plenty of x such that x = xR, but in
practice this lack of uniqueness does not give problems and, given x, with some
abuse of notation we will denote by x one of these choices. In this section and
context we will work with the additive cocycle on G× B

σ(M,x) := log
‖Mx‖
‖x‖ . (1.33)

B will be viewed as a metric space with respect to the distance

d (x, y) :=
| det(x, y)|
‖x‖‖y‖ , (1.34)

where det(x, y) = x1y2 − x2y1 is the determinant of the matrix with first column
equal to x and second column equal y. Moreover d(x, y) coincides with the absolute
value of the sine of the angle between the two lines (or rays) x and y.
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Theorem 1.7. We assume that (Yn)n∈N is an IID sequence of G-valued
random variables on which we assume that P(| det(Y1)| = 1) = 1 and that
E[log(‖Y1‖)] <∞. Moreover we call µ the law of Y1 and we assume

(a) that the smallest closed subgroup Gµ of G that contains the support of
µ is not compact;

(b) that µ is irreducible in the sense that no finite family of lines (or rays)
is stable under the action of all the elements of Gµ.

Then there exists a unique probability ν on B which is µ-invariant and we have
ν({x}) = 0 for every x ∈ B. Moreover

(1) For every x ∈ R2 \ {0} we have that a.s.

lim
n

1

n
log ‖Yn . . . Y1 x‖ = γ , (1.35)

where γ is the top Lyapunov exponent of (Yn).
(2) We have ( Furstemberg formula and positivity of γ)

γ =

∫
B

∫
G

log
‖Mx‖
‖x‖ µ( dM)ν( dx) > 0 . (1.36)

The property that ν({x}) = 0 for every x ∈ B will be simply stated as “ν is
diffuse”. Note that P(| det(Y1)| = 1) = 1 directly yields γ ≥ 0, because it yields
that the determinant of (Yn . . . Y1)∗Yn . . . Y1 is one, hence the largest eigenvalue is
not smaller than one. For the same reason (or simpler) we have also that ‖Y1‖ ≥ 1:
so the hypothesis is really that log(‖Y1‖) is in L1.

Theorem 1.7 and, in particular, Furstenberg formula for products are given for
IID matrices in G with determinant equal to 1 or −1. This result can easily be
adapted to the case in which one does not assume that the determinant is 1 or −1.
In fact for M ∈ G we can introduce M◦ := M/

√
| det(M)| so

1

n
log ‖Yn . . . Y1‖ =

1

n
log ‖Y ◦n . . . Y ◦1 ‖+

1

2n

n∑
k=1

log |det (Yj)| , (1.37)

and if we call λ+(M) and λ−(M) respectively the largest and the smallest eigen-

value of M∗M , then det(Y1) =
√

det(Y ∗1 Y1) =
√
λ+(Y1)λ−(Y1) and ‖Y ◦1 ‖2 =√

λ+(Y1)/λ−(Y1). Since we will work under the assumption that E‖ log Y ◦1 ‖ < ∞,
on the original matrix we are actually requiring that E log(λ+(Y1)/λ−(Y1)) <∞ and
that E| log(λ+(Y1)λ−(Y1))| <∞.

We now state and prove a series of results that hold under (a subset of) the
hypotheses of Theorem 1.7.

3.1. Irreducibility implies that µ-invariant probabilities are diffuse.
The existence of a µ-invariant probability ν on B is straightforward by a Césaro
mean argument because B is compact.
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Proposition 1.8. Under the hypotheses of Theorem 1.7 we have that if ν
is µ-invariant, then ν is diffuse.

Proof. Let us assume by absurd that ν is not diffuse, i.e. that there exists
x ∈ B such that ν({x}) > 0. Since ν is a probability, for every ε > 0 there is a most
a finite number of x such that ν({x}) ≥ ε and therefore there exists δ > 0 such that

• ν({x}) ≤ δ for every x ∈ B;
• if we set S := {x ∈ B : ν({x}) = δ, then 1 ≤ |S| <∞.

We are going to show that S is stable under the action of Gµ, which is in contrast
Hypothesis (b) of Theorem 1.7, so ν is diffuse.

For this we first choose y ∈ S and remark that

δ = ν({y}) = (µ ? ν)({y}) =

∫
G

∫
B

1{M ·x=y}ν( dx)µ( dM)

=

∫
G
ν
({
M−1 · y

})
µ( dM) ≤ δ , (1.38)

because ν({M−1 · y}) ≤ δ. But this implies that there exists a measurable subset
F of G,with µ(F ) = 1, such that ν({M−1 · y}) = δ for every y ∈ S and for every
M ∈ F . In other words, M−1 · y ∈ S for every y ∈ S and for every M ∈ F . Of
course we cannot have M−1 · y = M−1 · x for x 6= y, that is x 7→M−1 · x is injective
and, since S is finite, it is also surjective. Hence the inverse function, x 7→M · x, is
also a bijection from S to itself.

Now we remark that, by the definition of Supp(µ) (the support of µ), i.e. the set
of M ∈ G for which every neighborhood has positive µ measure, we have that F is
dense in Supp(µ). Therefore M · y ∈ S as well as M−1 · y ∈ S for every y ∈ S and
for every M ∈Supp(µ) and, in turn, also for every M ∈ Gµ. So S is stable under
the action of Gµ and the proof is complete.

�

4. About the action of the transposed matrices

Considering the transposed random variables Xn := Y ∗n does not make a big
difference. If (Yn) satisfies the hypotheses in Theorem 1.7, the same hypotheses are
satisfied by (Xn). We state this in a lemma in which we use µ∗ for the law of X1.

Lemma 1.9. If (Yn) satisfies the hypotheses in Theorem 1.7, then the same
holds for (Xn), which is therefore an IID sequence of G valued random variables
with absolute value of the determinant equal to one. Moreover Gµ∗ is not compact
and there exists no finite union of rays that is stable under the action of Gµ∗.

In particular, Theorem 1.8 applies and any µ∗-invariant probability ν∗ is diffuse.
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Proof. The basic facts (value of the determinant and integrability properties)
are evident. The non compactness property follows because taking the transpose is
a homeomorphism form G to G. So if we take the transpose of the elements in the
smallest closed semigroup that contains the support of µ, we find the smallest closed
semigroup that contains the support of µ∗. Moreover the norm of M ∈ G coincides
with the norm of M∗ because the spectrum of M ∗M coincides with the spectrum
of MM∗. Since the non compactness property of a closed subset G of G is just the
fact that the supM∈G ‖M‖ =∞ we are done.

The X matrices inherit the irreducibility property because if there exists a finite
family of rays that is stable under the action of Gµ∗ , there exists such a family
also for the Y matrices. This can be seen by observing that if M · x = x, then
Mx = λx for some λ 6= 0, so 0 = 〈x⊥,Mx〉 = 〈M∗x⊥, x〉, where of course x⊥ is a
non zero vector perpendicular to x. Hence M∗x⊥ = λ′x⊥ and we have a fixed ray
also for the transposed matrix. This takes care of the case in which the family of
rays is just given by one ray. In the general case in which there are k rays that are
fixed (in reality one can show that k is either one or two) then, since x 7→ M · x
is injective, for every ray x in this family there exists j ≤ k such that M j · x = x.
Then, by the previous argument, (M∗)j fixes the ray x⊥. This directly yields that
{x⊥,M∗x⊥, . . . , (M∗)j−1x⊥} is invariant under the action of M∗. To wrap it up: if
if there exists a finite family of rays that is stable under the action of Gµ∗ , then the
family of the orthogonal rays are stable under the action of Gµ, but such a family
does not exist by hypothesis. �

The novelty in working with the transposed matrices is the inversion of the
order: (Yn . . . Y1)∗ = X1 . . . Xn. If this is irrelevant from certain viewpoints, notably
‖(Yn . . . Y1)∗‖ = ‖Yn . . . Y1‖ so γ = limn(1/n)E log ‖X1 . . . Xn‖, it is not irrelevant at
all from other aspects. In particular, X1 . . . Xn ·x converges in probability (and even
a.s. under slightly stronger assumptions): in Proposition 1.10 one can find a result
that goes toward this direction. Note that this is definitely false for Yn . . . Y1 ·x: the
action of Yn+1 will substantially modify the direction of the vector and one can only
hope for convergence in law for Yn . . . Y1 · x.

Here is the main result of Section 4:

Proposition 1.10. We assume the validity of the hypotheses in Theorem 1.7.
There exists a unique probability ν∗ that is µ∗-invariant and a B valued random
variable Z (of law ν∗) such that P( dω)-a.s.

X1(ω) . . . Xn(ω)ν∗
n→∞
=⇒ δZ(ω) . (1.39)

Remark 1.11. Note that, since by Lemma 1.9 the sequences (Yn) and (Xn)
satisfy the same assumptions, Proposition 1.10 implies also that there exists a unique
µ-invariant probability ν (and, by Proposition 1.8, ν, as well as ν∗, is diffuse.

A main step in proving Proposition 1.10 is the following statement, that will be
proven by a martingale argument.
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Lemma 1.12. Under the hypotheses in Theorem 1.7 we have that if ν∗ is
a µ∗-invariant probability then there exists ω 7→ νω, measurable map for Ω to
the probabilities over B (equipped with the weak convergence metric and the
corresponding Borel σ-algebra) such that P( dω)-a.s.

X1(ω) . . . Xn(ω)ν∗
n→∞
=⇒ νω , (1.40)

and (P⊗ µ∗)( d(ω,M)) a.s.

X1(ω) . . . Xn(ω)Mν∗
n→∞
=⇒ νω . (1.41)

Moreover E
∫
B f dνω =

∫
B f dν∗ for every bounded measurable f : R→ R.

Proof of Lemma 1.12. For f ∈ C0(B;R), hence f ∈ C0
b (B;R), we introduce

the function F : G→ R defined by

F (M) = Ff (M) :=

∫
B
f (M · x) ν∗( dx) . (1.42)

In analogy with the definition of Y0, X0 is the identity matrix. We now define
Mn := X0X1 . . . Xn and claim that (F (Mn))n=0,1,... is a martingale with respect to
the natural filtration (Fn) of (Xn)n=0,1,.... F (Mn) is in fact measurable with respect
to Fn, it is a real random variable in L1 (in fact, in L∞) and

E
[
F (Mn+1)

∣∣Fn] (ω) =

∫
G
F (Mn(ω)M)µ∗( dM)

=

∫
G

∫
B
f (Mn(ω)M · x)µ∗( dM)ν∗( dx)

=

∫
B
f (Mn(ω) · y) (µ∗ ? ν∗)( dy)

=

∫
B
f (Mn(ω) · y) ν∗( dy) = F (Mn) .

(1.43)

Since ‖F (Mn) ‖∞ ≤ ‖f‖∞, the Martingale Convergence Theorem guarantees that
(F (Mn)) converges a.s. and, by the Dominated Convergence Theorem, also in L1

(in fact, in any Lp, p ≥ 1), to a random variable that we denote by Qf . We
now use that we can find a sequence (fk) of elements in C0(B;R) which is dense
in C0(B;R), so P( dω) a.s. we have that for every k the sequence (Ffk(Mn(ω)))
converges to Qfk(ω). Of course this means that (Mn(ω)ν∗) converges to a limit
probability νω, for ω in a probability one subset of Ω. By defining νω to be an
arbitrary fixed probability measure on B for all the rest of the ω’s, one readily
verifies the measurability properties of ω 7→ νω. Therefore (1.40) is established.

Our argument shows that
∫
B f dν∗ = F (M0) = E[F (Mn)] → E[Qf ] but also

that F (Mn(ω)) =
∫
B f(Mn(ω) · x)ν∗( dx) →

∫
B f dνω. Again by the Dominated

Convergence Theorem, we obtain that limn E[F (Mn(ω))] = E[
∫
B f dνω] and therefore

that E[
∫
B f dνω] =

∫
B f dν∗.
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Now we turn to (1.41) and we aim at showing that that there exists Ωf measur-
able subset of Ω with P(Ωf ) = 1 and Gf measurable subset of G with µ∗(Gf ) = 1
such that

lim
n
F (Mn(ω)M) = Qf (ω) , (1.44)

for every ω ∈ Ωf and every M ∈ Gf . This suffices because we can find a sequence
(fk) of elements in C0(B;R) which is dense in C0(B;R) and of course P(∩kΩfk) = 1
as well as µ∗(∩kGfk) = 1

For this we exploit that (F (Xn)) is a martingale in L2 so
n∑
k=1

E
[
(F (Mk)− F (Mk−1))2] = E

[
F (Mn)2

]
− E

[
F (M0)2

]
≤ ‖f‖2

∞ . (1.45)

Therefore
∞∑
k=1

E
[
(F (Mk)− F (Mk−1))2] ≤ ‖f‖2

∞ <∞ . (1.46)

But since (Xk) is an IID sequence

E
[
(F (Mk+1)− F (Mk))

2] =

∫
G
E
[
(F (MkM)− F (Mk))

2]µ∗( dM) , (1.47)

hence, by (1.46) and the Fubini-Tonelli Theorem, we have∫
G
E

[
∞∑
k=0

(F (MkM)− F (Mk))
2

]
µ∗( dM) < ∞ . (1.48)

In particular limk F (Mk(ω)M)− F (Mk(ω)) = 0 P( dω) and µ∗( dM) almost surely,
and this yields (1.44) since limk F (Mk(ω)) = Qf (ω) P( dω)-a.s.. �

In what follows we are going to need to work also with matrices which do not
have an inverse. Notably, we need to define Am for some probabilities m on B and
this could be ill defined because defining Am involves computing A · x which is not
defined if Ax = 0. However this is not really a problem if we exclude the trivial case
A ≡ 0 (i.e., at least one entry of A is non zero) and if we assume that m is diffuse.
This is the content of the next lemma.

Lemma 1.13. If A 6≡ 0 and m is a diffuse probability on B = P (R2) then
Am is the probability defined by∫

B
f d(Am) =

∫
{x∈B:Ax 6=0}

f (A · x)m( dx) , (1.49)

for every f : B→ R bounded and measurable. Moreover if (An) converges to A,
then Anm⇒ Am.

Proof. The key point is to observe that, since A 6≡ 0, there exists at most one
ray y such that Ay = 0. So, A · x is ill defined only for x = y. But m({y}) = 0
because m is diffuse so we can proceed to define the Am as we did. The fact that
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Am is a probability follows from the properties of the integral in the right-hand side
of (1.49): in particular

∫
B d(Am) = 1 because m({y}) = 0.

The second statement holds because if we call yn, respectively y, the ray such
that Ayn = 0, respectively Ay = 0 (they may or may not exist), we can perform the
limiting (Dominated Convergence) procedure by integrating over {x ∈ B : x 6= y
and x 6= yn for every n}, since this is a set of m-probability one. �

We are now ready to prove Proposition 1.10.

Proof of Proposition 1.10. We exploit the content of Lemma 1.12 and also
the notation Mn = X1 . . . Xn used in its proof. For ν∗ a µ∗-invariant probability –
we recall that by Lemma 1.8 ν∗ is diffuse – Lemma 1.12 tells us that (for ω ∈ Ω0

and M ∈ G0, P(Ω0 = 1) and µ∗(G0) = 1) Mn(ω)ν∗ ⇒ νω and Mn(ω)Mν∗ ⇒ νω.
Consider then the sequence of norm one matrices (Mn(ω)/‖Mn(ω)‖) for ω ∈ Ω0: this
is a relatively compact sequence and we call A(ω) a limit point. Since ‖A(ω)‖ = 1,
then A(ω) 6≡ 0. Moreover Mn(ω)ν∗ = (Mn(ω)/‖Mn(ω)‖)ν∗. So by Lemma 3.15 we
have that for ω ∈ Ω0 and M ∈ G0

A(ω)ν∗ = νω and A(ω)Mν∗ = νω . (1.50)

Let us show that we cannot have det(A(ω)) 6= 0. In fact in this case we would have
Mν∗ = (A(ω))−1νω as well as ν∗ = (A(ω))−1νω. So Mν∗ = ν∗ for every M ∈ G0

and this extends to every M ∈Supp(µ) because G0 is dense in Supp(µ). Therefore
we see that

Supp(µ) ⊂ {M ∈ G : | det(M)| = 1, Mν∗ = ν∗} =: G1 . (1.51)

but G1 is a compact subset of G and this is impossible because Supp(µ) is not. In
fact, if G1 is not compact we can find Mn ∈ G1 with ‖Mn‖ → ∞. Using the relative
compactness of (Mn/‖Mn‖) we can extract a subsequence along which this sequence
converges to a limit matrix that we call C for which Cν∗ = ν∗ still holds and we have
also that limn det(Mn/‖Mn‖) → det(C). But det(Mn/‖Mn‖) = ±1/‖Mn‖ → 0 so
det(C) = 0. But then Cν∗ = ν∗ implies that ν∗ is concentrated on one ray and this
is impossible because ν∗ is diffuse.

We are therefore dealing with A(ω) of rank one, so there exists one (and only
one) ray y(ω) for which A(ω) · y(ω) is not defined. And there exists also Z(ω) ∈ B
such that for x 6= y(ω) we have A(ω) · x = Z(ω). Therefore for every ω ∈ G0

νω = A(ω)ν∗ = δZ(ω) and X1(ω) . . . Xn(ω)ν∗ =⇒ δZ(ω) . (1.52)

Lemma 1.12 is telling us also that for f bounded measurable

E
[
f
(
Z(ω)

)]
= E

[∫
B
f dνω

]
=

∫
B
f dν∗ , (1.53)

which means that the law of the B-valued random variable Z is ν∗. Remark now the
important fact that A(ω) does not dependent on the choice of ν∗, so Z(ω) does not
depend on this choice either: therefore there is a unique µ∗-invariant probability. �
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We complete this subsection by giving a deterministic result that helps substan-
tially in going from results on the transposed matrix to the matrix itself.

Lemma 1.14. Let (An) be a sequence of 2×2 matrices such that | det(An)| = 1
for every n and such that there exists a diffuse probability m on B and a ray
z ∈ B such that A∗nm⇒ δz. Then

(1) limn ‖An‖ =∞;
(2) for every x ∈ R2

lim
n

‖Anx‖
‖An‖

= |〈x, z〉| , (1.54)

where we recall that 〈·, ·〉 is the scalar product in R2 and in the right-
hand side z should be read as z/‖z‖.

Proof. By passing to a subsequence we can assume An/‖An‖ → A. Since
‖A∗n‖ = ‖An‖ and (A∗n/‖A∗n‖)m = A∗nm we have A∗m = δz. If det(A) 6= 0 then
m = (A∗)−1δz = δ(A∗)−1·z which is impossible because m is diffuse.

So det(A) = 0. But ±1/‖An‖2 = det(An/‖An‖) → det(A) = 0 so ‖An‖ → ∞.
This proves (1).

For (2) we use that A is of rank one, since it is not identically zero. Therefore
A∗m = δIm(A∗) where of course Im(A∗) is the Image of A∗ acting on B, but it is
also the Image as linear operator on R2 (a line that goes through the origin). In
particular we have Im(A∗) = {z} and the kernel of A (as linear operator on R2)
coincides with the orthogonal of Im(A∗). Therefore if we choose z1 to be a unit
vector in the line z and z2 a unit vector orthogonal to z1, for x ∈ R2

Ax = 〈x, z1〉Az1 + 〈x, z2〉Az2 = 〈x, z1〉Az1 , (1.55)

and
1 = ‖A‖ = max

x:‖x‖=1
‖Ax‖ = max

x:‖x‖=1
|〈x, z1〉| ‖Az1‖ = ‖Az1‖ . (1.56)

Now it suffices to observe that

lim
n

‖Anx‖
‖An‖

= ‖Ax‖ = |〈x, z1〉| ‖Az1‖ = |〈x, z1〉| . (1.57)

�

5. On the L1 character of the cocycles and on the positivity of γ

In this section we develop the tools to show that the Lyapunov exponent is non
zero. This will go through showing that if the positive part of the cocycle is in L1

and if the cocycle evaluated on the product of random matrices Yn . . . Y1 tends to
∞ in a suitable (weak) sense, then the cocycle in in L1 and the growth is actually
proportional to n. We give this result in a rather general framework.
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Lemma 1.15. (Yn) is an IID sequence of G-valued random variables with
common law µ. We consider an additive cocycle σ on G× B. We assume that
ν is a µ-invariant probability on B and that∫

B

∫
G
σ+(M,x)µ( dM)ν( dx) < ∞, (1.58)

and that (P⊗ ν)( d(ω, x))-a.s.

lim
n
σ (Yn(ω) . . . Y1(ω), x) = ∞ . (1.59)

Then σ ∈ L1(P⊗ ν) and∫
B

∫
G
σ(M,x)µ( dM)ν( dx) > 0 . (1.60)

Proof. Like in the proof of Proposition 1.4, we work on E = GN×B equipped
with the product probability Λ := µ⊗N⊗ ν and θ is the translation operator defined
like before, i.e. θ((Mk)k∈N, x) = ((Mk+1)k∈N,M1 · x). Note that θ is Λ-preserving.

We focus on F ((Mk)k∈N, x) := σ(M1, x) and (again, like in the proof of Proposi-
tion 1.4) we have

σ (Yn . . . Y1, x) =
n∑
k=1

σ (Yk, Yk−1 . . . Y1 · x) =
n−1∑
k=0

F ◦ θk ((Yn), x) . (1.61)

From now on, for conciseness, we call x an element of E, F the σ-algebra on E
and what we want to show is that if f : E → R is a measurable function such that∫
E
f+ dΛ < ∞ and Sn(x) :=

∑n−1
k=0 f ◦ θk(x) → ∞ Λ( dx)-a.s. (it is practical to set

for later on S0(x) := 0), then f ∈ L1 and
∫
E
f dΛ > 0.

For this we apply the Birkhoff Ergodic Theorem (Corollary A.2) to obtain that
Λ( dx)-a.s.

lim
n

1

n
Sn(x) = E

[
f
∣∣I] (x) , (1.62)

where E is the expectation with respect to the probability Λ and I is the σ-algebra
of the events A ∈ F such that Λ(A∆θ−1(A)) = 0. Since Sn(x) → ∞ we directly
obtain that a.s. E[f |I](x) ≥ 0 and therefore E[f ] =

∫
E
f dΛ ≥ 0. In particular∫

E
f− dΛ ≤

∫
E
f+ dΛ <∞, i.e. f ∈ L1.

We are therefore left with showing that
∫
E
f dΛ > 0. Let us therefore assume

that
∫
E
f dΛ = 0 and look for a contradiction. So we start by observing that

0 =
∫
E
f dΛ = E[E[f |I]] = 0 and we have seen that E[f |I] ≥ 0 a.s.. So E[f |I] = 0

a.s. and this means that Sn(x) = o(n) a.s..
To show that this is impossible we use (Sn) to build a sequence of random subsets

of the real line equipped with the Lebesgue measure λ. This sequence of random
sets depends on a parameter ε > 0 and the nth set is the union of the intervals
Sk(x)+ [−ε, ε] =: Iε(Sk(x)) for k going from 0 to n−1. We call mε

n(x) the Lebesgue
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measure of this set:

mε
n(x) = λ

(
n−1⋃
k=0

Iε (Sk(x))

)
. (1.63)

The straightforward rough upper bound

mε
n(x) ≤ 2

(
max

k=0,...,n−1
|Sk(x)|+ ε

)
Λ( dx)-a.s

= o(n) , (1.64)

and the even more immediate remark that mε
n(x) ≤ 2εn lead (via Dominated Con-

vergence) to limn E[mε
n]/n = 0.

Now we play on the structure of Sn: in particular we have Sk ◦ θ = Sk+1 − S1.
Using ∪n0Ak \ ∪n1Ak = A0 \ ∪n1Ak and S0 = 0 we obtain

mε
n+1(x)−mε

n(θx) = λ

(
n⋃
k=0

Iε (Sk(x))

)
− λ

(
n−1⋃
k=0

Iε (Sk+1(x)− S1(x))

)
=

λ

(
n⋃
k=0

Iε (Sk(x))

)
−λ

(
n−1⋃
k=0

Iε (Sk+1(x))

)
= λ

(
n⋃
k=0

Iε (Sk(x))

)
−λ

(
n⋃
k=1

Iε (Sk(x))

)

= λ

(
[−ε, ε] \

n⋃
k=1

Iε (Sk(x))

)
≥ 2ε1{mink=1,...,n |Sk|>2ε}(x) , (1.65)

from which it is also clear (last equality) the important fact that mε
n+1(x)−mε

n(θx)
does not increase as n increases and therefore E[mε

n+1]−E[mε
n] has the same property.

All this implies that

Λ

({
x : min

k=1,...,n
|Sk(x)| > 2ε

})
≤ 1

2ε

(
E
[
mε
n+1

]
− E [mε

n]
)

≤ 1

2ε(n+ 1)

n∑
k=0

(
E
[
mε
k+1

]
− E [mε

k]
)
≤ E

[
mε
n+1

]
2ε(n+ 1)

n→∞−→ 0 , , (1.66)

that means

Λ

({
x : min

k∈N
|Sk(x)| > 2ε

})
= 0 . (1.67)

Actually, Sk+m−Sm = Sk ◦θm and Sk ◦θm has the same law as Sk so for every ε > 0
and every m = 0, 1, . . .

Λ

({
x : min

k∈N
|Sk+m(x)− Sm(x)| > 2ε

})
= 0 , (1.68)

and therefore the Λ-measure of the event

E0 := {x : ∃ ε > 0 and m ∈ N ∪ {0} such that |Sk+m(x)− Sm(x)| > 2ε ∀ k ∈ N} ,
(1.69)

is zero and this is impossible because {x : Sn(x)→∞} ⊂ E0. In fact if Sn(x)→∞
we can choose m equal to the last time n at which Sn(x) is equal to its global
minimum, i.e. m = max{n = 0, 1, . . . : Sn(x) = mink Sk(x)}, and we can choose
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ε = infk=1,2,... |Sm+k(x) − Sm(x)|/3, which is in fact a minimum and it is positive
because of the way defined m and because Sm+k(x)− Sm(x)→∞ for k →∞. �

6. The Furstenberg Theorem and Formula: a proof

This section is devoted to the proof of Theorem 1.7. The arguments we present
naturally give more results that we collect in the following statement:

Proposition 1.16. Under the hypotheses of Theorem 1.7

(1) For every x, y ∈ B with x 6= y we have that P( dω)-a.s.

lim
n

1

n
log d(Yn(ω) . . . Y1(ω) · x, Yn(ω) . . . Y1(ω) · y) = −2γ . (1.70)

(2) There exists a random variable ω 7→ V (ω) taking values in R2 \ {0}
such that P( dω)-a.s.

lim
n

1

n
log ‖Yn . . . Y1 V (ω)‖ = −γ , (1.71)

and for every non zero random variable U which a.s. is not collinear
with V (i.e., the probability that U(ω) and V (ω) are not on the same
ray is one) we have

lim
n

1

n
log ‖Yn . . . Y1 U(ω)‖ = γ , (1.72)

Proof of Theorem 1.7. For the existence of a unique µ-invariant probability
see Remark 1.11 and ν is diffuse by Lemma 1.8.

We recall that Xk = Y ∗k and in this proof Sn := Yn . . . Y1, so Sn = M∗
n (with

Mn used in Sec 4). By Proposition 1.10 we know that a.s. S∗n(ω)ν∗ ⇒ δZ(ω) so, by

Lemma 1.14, we have that for every x ∈ R2 a.s.

lim
n
‖Sn‖ =∞ and lim

n

‖Sn(ω)x‖
‖Sn(ω)‖ =

∣∣〈Z(ω), x
〉∣∣ . (1.73)

Since the law of Z(ω) is diffuse 〈Z(ω), x〉 6= 0 a.s. and this largely implies that
log ‖Sn(ω)x‖ and log ‖Sn(ω)‖ are asymptotically equivalent and, by Theorem 1.5
that says that (1/n) log ‖Sn(ω)‖ → γ, (1.35) is established.

For the integral formula (1.36) we recall that the relevant cocycle is σ(M,x) =
log(‖Mx‖/‖x‖). We have∫

B

∫
G
σ+(M,x)µ( dM)ν( dx) ≤

∫
G

log+ ‖M‖µ( dM) = E
[
log+ ‖Y1‖

]
. (1.74)

Moreover from (1.73) we have that

lim
n
σ (Sn, x) = ∞ , (1.75)

if 〈Z(ω), x〉 6= 0 and this happens P⊗ν( d(ω, x))-a.s. by the Fubini-Tonelli Theorem
using either that ν is diffuse or that the law of Z is diffuse. We can therefore apply
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Lemma 1.15 and we obtain that σ ∈ L1 and∫
B

∫
G

log
‖Mx‖
‖x‖ µ( dM)ν( dx) > 0 . (1.76)

We are therefore done once we show that the left-hand side of (1.76) coincides with
γ. For this we remark that by Proposition 1.4 (strictly speaking, Proposition 1.4
is stated and proven with a different choice of space B, but the proof is identi-
cal for the B we are using now) limn σ(Sn(ω), x)/n =: Φ(ω, x), P ⊗ ν( d(ω, x))-a.s.
and in L1. In particular

∫
B

∫
Ω

Φ(ω, x)P( dω)ν( dx) =
∫
B

∫
G σ(M,x)µ( dM)ν( dx):

note that this is the left-hand of (1.76). At this point we recall that we have just
proven that log ‖Sn(ω)x‖ ∼ ‖Sn(ω)‖ ∼ nγ for n → ∞ and of course σ(Sn, x) =
log(‖Sn(ω)x‖/‖x‖) ∼ log ‖Sn(ω)x‖. We therefore conclude that Φ(ω, x) = γ,
P ⊗ ν( d(ω, x))-a.s., which directly yields that the left-hand of (1.76) is equal to
γ. �

Proof of Proposition 1.16. With the same notation of the previous proof,
by (1.73), by recalling (1.34) and that | det(Sn(ω)| = 1 we see that for x 6= y that
are not orthorgonal to Z(ω)

d (Sn(ω) · x, Sn(ω) · y) =
| det(x, y)|

‖Sn(ω)x‖‖Sny‖
n→∞∼ | det(x, y)|

|〈Z(ω), x〉|〈Z(ω), y〉|
1

‖Sn(ω)‖2
.

(1.77)
Since the law of Z(ω) is diffuse we have that P(〈Z, x〉〈Z, y〉 = 0) = 0 so, by (1.35),
we obtain (1.70).

We now move to (1.71) and we remark that (1.71) is strongly suggested by
limn ‖Sn(ω)x‖/‖Sn(ω)‖ = |〈Z(ω), x〉|, with V (ω) perpendicular to Z(ω). In fact
‖Sn(ω)‖2 = ‖S∗n(ω)Sn(ω)‖ is just the largest of the two eigenvalues of S∗n(ω)Sn(ω).
So the other eigenvalue is 1/‖Sn(ω)‖2 and if we call un(ω) and vn(ω) the two (nor-
malized) eigenvectors, we have ‖Sn(ω)un(ω)‖ = ‖Sn(ω)‖ as well as ‖Sn(ω)vn(ω)‖ =
1/‖Sn(ω)‖. So we do have a direction (vn(ω)) along which the matrix product con-
tracts exponentially with rate γ (and therefore all other directions expand with rate
γ). Trouble is that vn(ω) depends on n and we want to replace vn(ω) with a vector
that does not depend on n. Actually, this replacement is possible because vn(ω)
does converge to a limit unit vector and because it does so exponentially fast with
a rate that is larger than γ (in fact, it is 2γ). This deep linear algebra statement is
the d = 2 case of a celebrated result (Oseledets Theorem): statement and proof are
in Appendix A (Theorem A.3).

The proof of Proposition 1.16 is therefore complete. �





CHAPTER 2

On the disordered Ising model

1. The basic example: the one dimensional Ising chain

We consider the one dimensional Ising model with random external field, that
is a Gibbs probability on the spin configurations σ ∈ {−1,+1}N . We choose peri-
odic boundary conditions for simplicity, that is σN+1 := σ1, but this can easily be
generalized (see Remark 2.1). The Hamiltonian of this model is

HN(σ) := −J
N∑
j=1

σjσj+1 −
N∑
j=1

hjσj , (2.1)

where J > 0 and (hj) is the realization of a sequence of IID random variable: the
law of (hj) is denoted by P, but we stress that we really view (hj) as a given (frozen,
quenched,. . .) realization. We then introduce the probability measure µN,(hj) by
setting

µN,(hj) (σ) :=
exp (−HN(σ))

ZN,(hj)
, (2.2)

where ZN,(hj) is the normalization and therefore

ZN,(hj) =
∑

σ∈{−1,1}N
exp (−HN(σ)) . (2.3)

ZN,(hj) is called partition function and it contains a lot of information about µN,(hj).
Notice in fact that

∂J logZN,(hj) =
∑
σ

(
N∑
j=1

σjσj+1

)
µN,(hj)(σ) =: EN,(hj)

[
N∑
j=1

σjσj+1

]
, (2.4)

which is the expected value of the Hamiltonian under µN,(hj) and if h = E[h1] then

∂h
1

N
logZN,(hj) = EN,(hj)

[
1

N

N∑
j=1

σj

]
, (2.5)

which is the expected value of the spatial average of the spins. Since we are interested
in very large values of N we introduce the free energy density

f = lim
N→∞

1

N
E logZN,(hj) . (2.6)

25
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We will see just below that this limit exists: in fact almost surely in the realization
of (hj)

f = lim
N→∞

1

N
logZN,(hj) , (2.7)

and the convergence holds also in L1. The free energy density f is a function of J
and of the law of (hj). In particular, it may be viewed as a function of h and, for
example, we do have that

∂hf = lim
N

EEN,(hj)

[
1

N

N∑
j=1

σj

]
, (2.8)

provided that ∂hf exists (and, in this case, E can be removed from the right-hand
side (2.8)). This result just follows from the fact that h 7→ logZN,(hj) is convex and
convexity carries with itself also the information that h 7→ f is continuous and C1

except possibly for a countable number of values. We will see later on that f is in
fact very regular.

Now we explain that ZN,(hj) can be written as the trace of the product of the
IID random matrices (called transfer matrices)

Tj :=

(
ehj 0
0 e−hj

)(
eJ e−J

e−J eJ

)
=

(
eJ+hj e−J+hj

e−J−hj eJ−hj

)
. (2.9)

In fact

ZN,(hj) =
∑

σ1∈{−1,+1}

∑
σ2∈{−1,+1}

. . .
∑

σN∈{−1,+1}

N∏
j=1

eJσjσj+1+hjσj

=
∑

σ1∈{−1,+1}

(T1T2 . . . TN)k(σ1),k(σ1) = trace (T1T2 . . . TN) ,

(2.10)

where we have used the periodic boundary conditions σN+1 = σ1 and we have
introduced the function k : {−1, 1} → {1, 2} defined by k(−1) = 2 and k(1) = 1.

Remark 2.1. Other boundary conditions can be chosen: for example if we fix
σ1 = 1 and σN+1 = −1 then the arising partition function would simply be equal to
(T1T2 . . . TN)1,2.

From this matrix product representation we can easily extract that the limits in
(2.6) and (2.7) exist if h1 ∈ L1.

Proposition 2.2. Assume h1 ∈ L1. For every J > 0 the limits in (2.6)
and (2.7) exist and they are equal to the top Lyapunov exponent of the product
of the random matrices (Tj). In short, f = γ.



1. THE BASIC EXAMPLE: THE ONE DIMENSIONAL ISING CHAIN 27

Proof. Let us first observe a fact of independent interest (and valid in general
for matrices with positive entries even if we give the argument for the specific case
we consider): for j, k ∈ {1, 2}

lim
n

1

n
log(T1T2 . . . Tn)j,k = γ , (2.11)

a.s. and in L1. This of course yields the result for the trace, i.e. the convergence
results we are after.

The claim (2.11) follows directly from∣∣∣∣∣log(T1T2 . . . Tn)j,k −
∑
j,k

log(T2 . . . Tn−1)j,k

∣∣∣∣∣ ≤ 2J + |h1|+ |hn| . (2.12)

This follows by observing that with h = hn(
eJ+h e−J+h

e−J−h eJ−h

)(
1
0

)
=

(
eJ+h

e−J−h

)
=

(
1
1

)
×
{
≤ exp(J + |h|)
≥ exp(−J − |h|) , (2.13)

where the inequalities are meant componentwise. Note that the same inequality
holds (in principle, even a better one) if we replace (1, 0) by (0, 1). In the same way
for h = h1

(1, 0)

(
eJ+h e−J+h

e−J−h eJ−h

)
=
(
eJ+h, e−J+h

)
= (1, 1)×

{
≤ exp(J + |h|)
≥ exp(−J − |h|) , (2.14)

and the same bound holds if we replace (1, 0) by (0, 1). Therefore the claim (2.11)
is proven and the proof is complete. �

Next we show that Furstenberg Theorem (Theorem 1.7) applies and we exploit
the formula for γ that it gives.

Proposition 2.3. Assume h1 ∈ L1 and nontrivial. Consider the Markov
chain X = (Xj)j=0,1,... on (0,∞) defined by the random iteration

Xj+1 7→ e−2hj
e−2J +Xj

1 +Xje−2J
. (2.15)

Then X has a unique invariant probability mJ and

f = J + E[h1] +

∫
0,∞)

log
(
1 + e−2Jx

)
mJ( dx) . (2.16)

Proof. First of all notice that det(Tj) = e2J − e−2J > 0 is deterministic. So the
transfer matrices can be trivially reduced to unit determinant: this reduction will
be relevant only in verifying the non compactness property, so we will mostly work
with (Tn) rather than (Tn/

√
2 sinh(2J).

The integrability property is evident. For the rest note that T1 is a matrix with
positive entries, so by the Perron-Frobenius Theorem the largest eigenvalue is real,
positive and simple. Since the determinant is positive, also the other eigenvalue is
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positive. Let us note immediately that this implies the non compactness property,
because it implies that Tn/

√
2 sinh(2J) has one eigenvalue larger than one.

Let us turn to irreducibility. For what follows we use the notation T1x
+ = λ+x

+

and T1x
− = λ−x

−, with λ+ > λ− > 0. In particular, the ray containing x+ and the
one containing x− are fixed. Moreover for every x 6= 0 not collinear with x− we have
that T n1 x becomes asymptotically collinear to x+. In order to prove irreducibility
it is therefore sufficient to show that the eigenvector corresponding to the leading
eigenvalue of T1 (for short: leading eigenvector) is not collinear with the leading
eigenvector of T2 when h1 6= h2.

Showing this involves a computation.
First of all λ± are identified by λ+λ− = e2J − e−2J and λ+ + λ− = 2eJ cosh(h).

Therefore

λ± = eJ(cosh(h)±
√

cosh(h)2 − 2e−2J sinh(2J) , (2.17)

and

x+
2

x+
1

=
1

2
eJ

((
1 + e−2h

)√
1− 1− e−4J

cosh(h)2
+ e−2h − 1

)
. (2.18)

It is straightforward to see that limh→−∞ x
+
2 /x

+
1 =∞ and limh→∞ x

+
2 /x

+
1 = 0. It is

also immediate to see that x+
2 /x

+
1 decreases as h < 0 increases. The fact that x+

2 /x
+
1

is decreasing also for h positive becomes clear if we observe that the term between
parentheses in (2.18) can be rewritten as

(
1 + e−2h

)
tanh(h)

√
1 +

e−4J

cosh(h)2 − 1
+ e−2h − 1 , (2.19)

which is zero for J =∞ for every h > 0. The claim then follows because the square
root term is decreasing for h > 0 increasing. Therefore the leading eigenvectors of
T1 and of T2 are not the same and no union of lines is invariant under the action of
both T1 and T2.

So we can apply Theorem 1.7 and we have in particular

f =

∫
B
E
[
log
‖Tjv‖
‖v‖

]
ν( dv) > 0 , (2.20)

where ν is the unique invariant probability on the projective space. Since the matri-
ces we are considering map the first quadrant to itself, as well as the third quadrant
to itself, and since ν is unique, ν is supported only on the set of the lines going
through the first and third quadrants and it is more practical to talk about a mea-
sure on an angle θ ∈ [0, π/2]. In order to understand the action of the matrix we
observe that for y > 0(

eJ+h e−J+h

e−J−h eJ−h

)(
1
y

)
=

(
eJ+h + e−J+hy
e−J−h + eJ−hy ,

)
(2.21)

so the action of the matrix on (0,∞) is

y 7→ e−J−h + eJ−hy

eJ+h + e−J+hy
= e−2h e

−2J + y

1 + e−2Jy
=: Z

ε+ y

1 + εy
=: Zfε(y) , (2.22)
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where we have introduced the standard variables [8, 4]

ε = e−2J and Z = e−2h . (2.23)

Of course we can can go back to the action on (0, π/2) by using θ = arctan(y). Note
that we can consider [0,∞] and [0, π] instead, but 0 and infinity are transient and
are not accessible from (0,∞).

By (2.21) it is clear that the Markov chain on the projective space we are after is
equivalent to the Markov chain on the positive real numbers given in the statement
of Proposition 2.3 (see (2.15)). And by Theorem 1.7 we know that it has a unique
invariant probability that we call mε. Of course we know also that mε is diffuse.
Finally, from (2.20), we see that

f = −1

2
(E[logZ] + log ε) +

1

2

∫
(0,∞)

E
[
log

(1 + εy)2 + Z2(ε+ y)2

1 + y2

]
mε( dy) , (2.24)

where we have used that in the new variables(
1
y

)
7→ 1√

εZ

(
1 + εy
Z(ε+ y)

)
. (2.25)

We can simplify (2.24) by observing that∫
(0,∞)

E
[
log

(1 + εy)2 + Z2(ε+ y)2

1 + y2

]
mε( dy) =∫

(0,∞)

log
(1 + εy)2

1 + y2
mε( dy) +

∫
(0,∞)

E
[
log
(
1 + Z2f 2

ε (y)
)]
mε( dy) (2.26)

and, by stationarity, Zfε(Y ) has the same law as Y , where Y and Z are independent
and the law of Y is mε. Therefore we can replace Z2f 2

ε (y) with y2 in the last integral
and we obtain (2.16). �

As we will discuss in some detail in Section 3, one does not expect anything
particularly interesting in the one dimensional Ising model. But there is a pseudo-
critical behavior as J →∞, i.e. ε↘ 0 which is meaningful in applications (see also
Section 2). This is the limit of strong interaction, for fixed disorder intensity.

2. More on disordered systems and matrix products

TO BE WRITTEN

3. The Derrida-Hilhorst singularity

We now choose to work with the variables ε = exp(−2J) ∈ (0, 1) and Zj =
exp(−2hj) ∈ (0,∞) that we have already used in the proof of Proposition 2.3. So

Tj =

(
1 ε
εZj Zj

)
. (2.27)
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We are always going to assume (at least) that logZ1 ∈ L1. We call γ(ε) the Lyapunov
function of this matrix product:

γ(ε) =

∫
log (1 + εt)mε( dt) , (2.28)

which is directly extracted from (2.16).
The origin of the question leads to the hypothesis ε > 0 but of course we can

consider the case ε = 0: this case fails to be irreducible. Note also that the case
ε < 0 can also be considered: in fact

D(1,−1)−1

(
1 −ε
−εZj Zj

)
D(1,−1) =

(
1 ε
εZj Zj

)
(2.29)

where D(a, b) is the diagonal matrix with D(a, b)1,1 = a and D(a, b)2,2 = b. This
directly yields that γ(ε) = γ(−ε).

Corollary B.5 tells us that ε 7→ γ(ε) is real analytic for ε ∈ (0, 1), so the same is
true for ε ∈ (−1, 1) \ {0}. What happens for ε→ 0?

We are now going to explain the 2-scale idea in [8] that leads to the prediction
that if E[logZ] < 0 and E[Z] ∈ (1,∞) then

γ(ε)
ε→0∼ C|ε|2α , (2.30)

where C is a positive constant and α ∈ (0, 1) is the unique positive solution to
the equation E[Zβ] = 1. Note in fact that β 7→ E[Zβ] is a convex function. The
assumption that E[Z] is finite is telling us that this function is bounded in [0, 1]
(hence continuous and even smooth in (0, 1)) and E[logZ] < 0 is its derivative form
the right at zero. Since this function in zero takes value one, E[Zβ] = 1 has a unique
solution β ∈ (0, 1) that we call α.

The point is understanding the invariant measure of the Markov chain on (0,∞)
defined by the random iteration (2.22): Xn+1 = Zn+1fε(Xn). It is of course equiv-
alent to study the Markov chains (Xn/ε) or (εXn): we are going to consider the
ε↘ 0 limit of these two processes.

(1) The random iteration corresponding to (Xn/ε) is

x 7→ Z
1 + x

1 + ε2x

ε↘0−→ Z(1 + x) . (2.31)

Therefore we introduce the Markov chain (Xsr
n ), that focuses on the short

range (i.e., near the origin), defined by Xsr
n+1 = Zn+1(1 +Xsr

n ).
(2) The random iteration corresponding to (εXn) is

x 7→ Z
ε2 + x

1 + x

ε↘0−→ Z
x

1 + x
, (2.32)

and we introduce the Markov chain (X lr
n ), that focuses on the long range

(i.e., the tail), defined by X lr
n+1 = Zn+1X

lr
n /(1 +X lr

n ).

For the short range process we can even write an explicit formula: by iterating
we see that

Xsr
n = Zn + ZnZn−1 + . . .+ ZnZn−1 . . . Z2 + ZnZn−1 . . . Z1 (1 +Xsr

0 ) , (2.33)
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Figure 1. A numerical approximation of the invariant probability of the short
range Markov chain (2.31), for ε = 0.1 (the more compact histogram) and ε = 0.
The simulation uses Z ∼ U(0.05, 2.05), which yields E[logZ] = −0.1893 . . . and
α = 0.7369 . . . In fact, the histogram approaches the density of the invariant

probability.

where of course Xsr
0 is independent of (Zn). Then we remark that

Xsr
n ∼ Z1 + Z1Z2 + . . .+ Z1Z2 . . . Zn−1 + Z1Z2 . . . Zn (1 +Xsr

0 ) , (2.34)

and, if E[logZ] < 0, the right hand side converges a.s. to the random variable

Y :=
∞∑
n=1

n∏
j=1

Zj , (2.35)

whose law νsr is therefore the invariant probability for the short range Markov chain.
Since Xsr

0 has an arbitrary law, this is the unique invariant probability of the chain.
It is not completely straightforward to get quantitative properties on law of Y , but
this random variable has been studied, notably because it come sup as fundamental
tool in studying random walks in random environment. Notably, in [18, Th. 5] it is
shown that there exists csr > 0 such that

νsr((t,∞))
t→∞∼ csr

tα
, (2.36)

where νsr is the law of Y and (2.36) holds just assuming that the support of logZ is
not contained in cZ for some c > 0 and that E[Zα log+ Z] <∞ (besides, of course,
E[logZ] < 0 and E[Zα] = 1). For the result in (2.36) we signal also [3].

The long range process has a very different nature. In fact it is not difficult to
see that it is transient. This follows by observing that X lr

n+1 ≤ Zn+1X
lr
n . Hence

X lr
n ≤ X0

n∏
j=1

Zj = X0 exp

(
n∑
j=1

logZj

)
, (2.37)
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so limnX
lr
n = 0 a.s.. As a matter of fact, the random walk (

∑n
j=1 logZj) is transient

(and tends to −∞). Therefore (logX lr
n ) is transient, and so is (X lr

n ). There is
therefore no hope to find an invariant probability. Nevertheless one can find invariant
measures: this problem has not been considered in full generality, but for example
in [16] it is shown that an invariant measure νlr exists if

(1) the support of the law of Z is bounded and bounded away from zero;
(2) Z has C1 density.

Moreover, under these conditions, νlr has a density (still denoted by νlr(·)) and
lims↘0 νlr(s)/s

1+α = c > 0. Since νlr is defined up to a multiplicative constant, the
value of c is arbitrary. On the other hand, since we are assuming that the support
of the law of Z is bounded, also the support of ν is bounded: it is straightforward
to see that the support of νlr is bounded above by sup Supp(Z). in fact, a more
attentive analysis shows that sup Supp(νlr) = sup Supp(Z)− 1.

It is certainly possible to generalize this result to a wider class of distributions
(less regular, without the conditions on the support) and obtain nevertheless that

νlr ((s,∞))
s↘0∼ clr

sα
, (2.38)

where, again, clr > 0 depends on an arbitrary choice. However such a result has
been fully developed only in the restricted set-up explained above.

Remark 2.4. It is not difficult to identify the supremum and the infimum of
the support of mε, the invariant probability of our main Markov chain defined by
the iteration (2.22). When the support of Z is bounded away from 0 and ∞, it
is just a matter of finding the (stable) fixed point in (0,∞) of y 7→ zfε(y) with
z = z− := inf Supp(Z) < 1 and z = z+ := sup Supp(Z) > 1. Then

Supp (mε) ⊂
[√

4ε2z− + (z− − 1)2 + z− − 1

2ε
,

√
4ε2z+ + (z+ − 1)2 + z+ − 1

2ε

]
,

(2.39)
so, to leading order in ε↘ 0, the support is between ε times 2z−/(1− z−) and 1/ε
times z+ − 1. These results are correct also if z− = 0 and/or z+ =∞.

Remark 2.5. A way of grasping why the exponent α enters the game is that
the “smoothing transformation” x 7→ Zx appears as large scale approximation of
the short range transformation (2.31) and as short scale approximation of the long
range transformation (2.32). Passing to logarithm this is just the problem of finding
positive measures that are invariant under convolution with the law of logZ. One
can then show that if logZ has a density with respect to the Lebesgue measure, then
the only invariant measures are superpositions of measures with density proportional
to t 7→ exp(−αt) with α ∈ R solution to E[Zα] = 1. Going back to (0,∞) by applying
the exponential function we see that these densities become x 7→ x−1−α. A priori
one should consider also the presence of complex solutions α, but these are easily
excluded because we are interested in positive measures.
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With νsr and νlr in our hands we can now define the probability measure gε on
(0,∞). We use the notation Gm(t) = m((t,∞)) for a positive measure m on R such
that limt→∞m((t,∞)) = 0:

Ggε(t) =

{
Gνsr(t/ε) if t ≤ 1 ,

a(ε)Gνlr
(εt) if t > 1 ,

(2.40)

where a(ε) := Gνsr(1/ε)/Gνlr
(ε). Note that limε↘0 a(ε) is equal to a positive constant

(that depends on the choice we made for νlr) and, above all, that Ggε(·) is continuous.
We expect that gε is close to mε. Mathematically, the whole point is to show

that this is true and in a sense that is sufficiently strong to control the error in
the computation of the Lyapunov exponent. But let us proceed at a heuristic level
assuming that (recall (2.28))

γ(ε) =

∫
log (1 + εt)mε( dt)

ε↘0∼
∫

log (1 + εt) gε( dt) . (2.41)

And of course we can estimate precisely the rightmost term, by first re-expressing
it via integration by parts:∫

log (1 + εt) gε( dt) = ε

∫ ∞
0

Ggε(t)

1 + εt
dt

= ε

∫ 1

0

Gνsr(t/ε)

1 + εt
dt+ ε

Gνsr(1/ε)

Gνlr
(ε)

∫ ∞
1

Gνlr
(εt)

1 + εt
dt

= ε2

∫ 1/ε

0

Gνsr(t)

1 + ε2t
dt+

Gνsr(1/ε)

Gνlr
(ε)

∫ ∞
ε

Gνlr
(t)

1 + t
dt ,

(2.42)

and, by (2.36), we readily see that the contribution of the first term is asymptotically
equivalent to (1−α)cνsrε

1+α, but this sharp computation is useless because the second
term is much larger: by (2.38)

Gνsr(1/ε)

Gνlr
(ε)

∫ ∞
ε

Gνlr
(t)

1 + t
dt

ε↘0∼ csr

clr

ε2α

∫ ∞
0

Gνlr
(t)

1 + t
dt ∼ csrε

2α

∫ ∞
0

log(1 + t)
νlr

clr

( dt) ,

(2.43)
and we obtain (2.30) with a precise value of C which depends on csr, but luckily not
on clr. It depends of course on the long range distribution via the integral appearing
in the last term in (2.43): this integral is finite because of (2.36) and because the
support of νlr is bounded if the support of the law of Z is bounded.

Remark 2.6. What happens when Z = exp(−2h) is non random? Computations
are elementary but consequences are deep: it is more practical to go back to the
notation of (2.17) and we find (just a Perron-Frobenius eigenvalue computation)

f(J, h) = J+

{
log
(

cosh(h) + | sinh(h)|
√

1 + e−4J/(sinh(h))2
)

if h 6= 0 ,

log (1 + exp(−2J)) if h = 0 .
(2.44)
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and for J →∞

f(J, h) = J +

{
|h|+ e−|h|

2 sinh(|h|) exp(−4J) +O (exp(−8J)) if h 6= 0 ,

exp(−2J) +O (exp(−4J)) if h = 0 .
(2.45)

It is also useful to remark that for h 6= 0

∂hf(J, h) =
sign(h)√

1 + e−2J/ sinh(|h|)
= sign(h)

(
1− e−2J

2 sinh(|h|)

)
+O

(
e−4J

)
, (2.46)

and since ∂hf(J, h) is the expectation of the mean of the spins, hence it is the ex-
pectation of each spin by translation invariance, this result makes clear that, for J
large and h 6= 0, almost all spins are aligned with the magnetic fields (i.e., their sign
coincide with the sign of the field). The density of the mistakes is proportional to
exp(−4J) = ε2 and, by working a bit more, one can show that these deviations for
J large are essentially isolated “mistakes”.

Things are different for h = 0 because a more unstable phenomenon sets in:
the system is equally well on +1 or −1, so it will organize in long stretches of +1
and −1 for J large. This is a “domain-wall” structure and the walls have density
exp(−2J): this is the signature of a “pseudo-phase coexistence”. One can work this
out in detail for h non random, but we rather signal that when h, i.e. Z, is random
the result (2.30) strongly suggests that there is a complex “domain-wall” structure,
connected to a “frustration phenomenon”.

4. Mathematics results on the Derrida-Hilhorst singularity

The arguments in the previous section provide a probability gε that should be
close to the invariant probability we are after. In fact, an analogous 2-scale argument
can be performed also for the E[logZ] = 0 case (in a sense, this is the α = 0 case)
and it leads to the prediction that

γ(ε)
ε→0∼ c

log(1/|ε|) , (2.47)

for a c > 0 that is about as explicit as for the E[logZ] < 0 case. Note that this
case is more singular than the previous one and this should not come as a surprise:
γ(ε) is singular at the origin because there the matrix is not irreducible. But in the
case α = 0 the behavior of the logarithm of the two terms on the diagonal coincides.
Said otherwise, there is no separation of the two Lyapunov exponents in the ε = 0
case if E[logZ] = 0.

We now state a result under the hypothesis that the (nontrivial!) support of the
law of Z is bounded and bounded away from zero. This means that E[Zβ] <∞ for
every β ∈ R. Then it is not difficult to see that α – unique non zero solution β to
EZβ = 1 – is well defined as soon as P(Z > 1) > 0 and P(Z < 1) > 0, with the
provision that E[logZ] 6= 0. In fact if E[logZ] = 0 we have that EZβ = 1 if and
only if β = 0. Moreover if P(Z > 1) = 0 we see that E[Zβ] < 1 for every β > 0 and
E[Zβ] > 1 for every β > 0: that is why we want to avoid these (trivial cases).
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Theorem 2.7 ([16, 17]). We consider the top Lyapunov exponent associated
to the sequence (Tj), see (2.27) and we assume that

(1) the support of the law of Z is bounded and bounded away from zero;
(2) the law of Z has a C1 density;

then if α ∈ (0, 1) there exist C > 0 and δ > 0 such that

γ(ε) = C|ε|2α +O
(
|ε|2α+δ

)
, (2.48)

and if α = 0 there exist C1 > 0, C2 ∈ R and δ > 0 such that

γ(ε) =
C1

C2 − log(|ε|) +O
(
|ε|δ
)
. (2.49)

There is no loss of generality in assuming E[logZ] < 0. In fact(
1 ε
εZ Z

)
= Z

(
1/Z ε/Z
ε 1

)
= Z

(
0 1
1 0

)(
1 ε
ε/Z 1/Z

)(
0 1
1 0

)
, (2.50)

so the Lyapunov exponent when we replace Z with 1/Z is equal to −E[logZ]+γ(ε).
But of course the hypothesis that E[Z] > 1 is a real restriction. It is claimed in [8]
that if E[Zn] < 1 but E[Zn+1] > 1 than we should have

γ(ε) = c1ε
2 + . . .+ cnε

2n + Cε2α + o
(
ε2α
)
, (2.51)

with explicit c1, . . . , cn ∈ R and an implicit C > 0. Results in this direction can be
found in [12], but they are still far from identifying the Cε2α term in (2.51).

Of course another limit of the result in Theorem 2.7 is the hypothesis on the
support of the law of Z and of the existence of a C1 density (the result for α = 0
actually holds under weaker conditions: in [17] the support condition is removed,
and the density needs only to be Hölder continuous in an appropriate uniform way).
It is not known how much these assumptions can be relaxed: in [8] an exactly
solvable case is given (with Z that takes only two values, one of which is zero)
in which γ(ε) ∼ H(log(1/ε))ε2α, with H(·) a non trivial periodic function. It is
possible that this log-periodic amplitude persists when Z is supported contained in
{xn : n ∈ Z} for a given x > 0 and it may be that Theorem 2.7 can be generalized
out of these cases.

We complete this section by giving some hints about how the proof of Theo-
rem 2.7 goes.

Sketch of proof of Theorem 2.7. Let us discuss first the case E[logZ] < 0, i.e.
α ∈ (0, 1). There is a first step: show existence and establish asymptotic properties
of both νsr and νlr. The importance of the asymptotic properties are already clear
because of the computation (2.43), but sharper asymptotic control is needed for the
rest of the proof. Once this step is performed we have in our hands the probability
gε and we need to show that it is sufficiently close to the invariant probability mε.
For this we introduce a norm of differences of probabilities on (0,∞): for β ∈ (0α)

|||ν1 − ν2|||β :=

∫ ∞
0

x1−β |Gν1(x)−Gν2(x)| dx . (2.52)
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One can check (without much effort) that if define Lε[ν] =
∫

log(1 + ε2t)ν( dt) we
have

|Lε(ν1)− Lε(ν2)| ≤ ε2β|||ν1 − ν2|||β , (2.53)

and if we call Tε the one step Markov transition matrix for Markov process (let us
choose the short range one, i.e. (2.31), but this is an arbitrary choice: with this
choice and if we call m̃ε the invariant probability on this scale, i.e. Gm̃ε(t) = Gmε(tε),
then γ(ε) = Lε(m̃ε)) then for every ν1 and ν2

|||Tεν1 − Tεν2|||β ≤ E[Zβ] |||ν1 − ν2|||β , (2.54)

and remark that E[Zβ] < 1. This contraction property can be very useful because

|||m̃ε − g̃ε|||β = |||Tεm̃ε − g̃ε|||β ≤ |||Tεm̃ε − Tεg̃ε|||β + |||Tεg̃ε − g̃ε|||β , (2.55)

where, once again, Gg̃ε(t) = Ggε(tε). By applying the contraction property (2.54)
to the first addendum in the rightmost term in (4) we readily obtain that

|||m̃ε − g̃ε|||β ≤ cβ|||Tεg̃ε − g̃ε|||β , (2.56)

with cβ := 1/(1−E[Zβ]). The inequality (2.56) is very useful because the right-hand
side contains only g̃ε, a probability on which we have full control. We are therefore
left with controlling |||Tεg̃ε − g̃ε|||β. Unfortunately (for these notes) such an estimate
is quite heavy, and it depends on the adequately sharp control on the asymptotic
behaviors of νsr and νlr that we mentioned above. But it should be clear that it
suffices to show that |||Tεg̃ε − g̃ε|||β = o(ε2(α−β)), and we can play on choosing β < α
close to α.

If we want to treat the case α = 0, there is no room to choose β < α. But one
can work with |||·|||0 and (2.54) still holds. But E[Z0] = 1 and there is no contraction
anymore. The point that saves the game is that, by looking more closely, we can
show that there is still a micro-contraction and one can establish a version of (2.56)
with cβ = c0 =∞ replaced by an ε dependent term that tends to ∞ as ε↘ 0. But
it turns out that the control one can get on |||Tεg̃ε − g̃ε|||0 is sufficient to counter the
effect of the diverging pre-factor.

“�”

5. Continuum limits

We now consider an approximation of the random matrix product under analysis.
It is a diffusion limit in which one can compute the invariant probability, hence the
Lyapunov exponent becomes explicit (in terms of special functions). This approach
has been initiated by [14] and was first applied in the Ising context by [21]: it is a
weak disorder approach. The idea is simple: instead of (2.27) consider for ∆ > 0

T∆
j =

(
1 ε∆

ε∆Z∆
j Z∆

j

)
, (2.57)

where

Z∆
j := exp

(
σ
√

∆Nj − α
σ2

2
∆

)
, (2.58)
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with σ > 0 and (Nj) are IID standard Gaussian variables (this choice has been made
for simplicity, but it can be greatly generalized, see Remark 2.12). Note that

(1) E[logZ∆
1 ] = −∆ασ2/2 and E[(Z∆

1 )α] = 1;
(2) as ∆↘ 0 we have that T∆

j tends to the identity matrix.

Point (2) says in particular that the dynamics induced by this matrix product is
very slow, while (1) says that α corresponds to the same parameter for the case
(2.27) (and if we set ∆ = 1 in (2.57) we just find a particular case of (2.27)).

We will now show that the dynamics happens on the time scale 1/∆. For this
we introduce the discrete time stochastic process {(X∆

1 (n), X∆
2 (n))}n=0,1,... defined

recursively from the deterministic initial condition (X∆
1 (0), X∆

2 (0)) = (X1(0), X2(0))
by {

X∆
1 (n+ 1) = X∆

1 (n) + εX∆
2 (n)∆ ,

X∆
2 (n+ 1) = eσ

√
∆Nn+1−ασ

2

2
∆
(
X∆

2 (n) + εX∆
1 (n)∆

)
,

(2.59)

which can be rewritten in a more compact fashion as

X∆(n+ 1) = X∆(n) + A∆(n+ 1)X∆(n) , (2.60)

where

X∆ =

(
X∆

1

X∆
2

)
, A∆(n) =

(
0 ε∆

ε∆Z∆(n) Z∆(n)− 1

)
. (2.61)

So, X∆(n) results form the product of n independent matrices of the form I + A∆.
Rewriting (2.59) as{
X∆

1 (n+ 1)−X∆
1 (n) = εX∆

2 (n)∆ ,

X∆
2 (n+ 1)−X∆

2 (n) =
(
eσ
√

∆Nn+1−ασ
2

2
∆ − 1

)
X∆

2 (n) + eσ
√

∆Nn+1εX∆
1 (n)∆ ,

(2.62)
and remarking that

eσ
√

∆Nn+1−ασ
2

2
∆ = 1 + σ

√
∆Nn+1 − α

σ2

2
∆ +

σ2

2
∆ (Nn+1)2 + . . . , (2.63)

makes the following result plausible:

Proposition 2.8. Consider the random process{(
X∆

1 (bt/∆c) , X∆
2 (bt/∆c)

)}
t∈[0,∞)

, (2.64)

with trajectories in the Skorokhod space D([0,∞), (0,∞)2). As ∆↘ 0 we have
that this process converges in law to the diffusion (X1(·), X2(·)) solution of the
Itô stochastic system{

dX1(t) = εX2(t) dt ,

dX2(t) =
(
εX1(t) + (1−α)σ2

2
X2(t)

)
dt+ σX2(t) dBt ,

(2.65)

where B· is a standard Brownian motion and the initial condition is the same
as for the ∆ > 0 case.
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The choice fo the space of CADLAG trajectories D([0,∞), (0,∞)2) has been
made to accommodate the discrete trajectories, but one can easily define the ∆ > 0
process by affine interpolation and work in C0([0,∞), (0,∞)2).

It natural to define also for (X1(·), X2(·)) a Lyapunov exponent and it turns out
that this Lyapunov exponent can be made explicit: for this we recall one of the
definitions of the modified Bessel function of 2nd kind of index α ∈ C and argument
x > 0

Kα(x) :=

∫ ∞
0

exp (−x cosh(t)) cosh(αt) dt =
1

2

∫ ∞
0

1

y1+α
exp

(
−x

2

(
y +

1

y

))
dy .

(2.66)

Proposition 2.9. For every ε 6= 0 and every (X1(0), X2(0)) ∈ R \ {(0, 0)}
the limit

lim
t→∞

1

t
E log ‖(X1(t), X2(t))‖ =: γ0

σ,α(ε) , (2.67)

exists and does not depend on (X1(0), X2(0)). Moreover

γ0
σ,α(ε) =

σ2

4

(
xKα−1(x)

Kα(x)

)
, with x :=

4ε

σ2
. (2.68)

How is this Lyapunov exponent γ0
σ,α(ε) related to the Lyapunov exponent of the

matrix product? We call γ∆(ε) the Lyapunov exponent associated to (T∆
j ) defined

in (2.57) and, by Theorem 1.7, we have that a.s.

γ∆(ε) = lim
n→∞

1

n
log
∥∥X∆(n)

∥∥ . (2.69)

The link between γ∆(ε) and γ0
σ,α(ε) is a priori not clear. Recall in fact that in Propo-

sition 2.8 the convergence is in D([0,∞), (0,∞)2) and this is equivalent to claiming
convergence in D([0, t], (0,∞)2), for every t > 0. So, in reality, the convergence is
local in time or, at least, there is no uniformity in time. In this sense, the following
result is not a priori obvious:

Proposition 2.10. For every ε 6= 0

lim
∆↘0

γ∆(ε)

∆
= γ0

σ,α(ε) . (2.70)

It will not come as a surprise now that one can analyze in great detail the ε→ 0
behavior of γ0

σ,α(ε). What is possibly a bit surprising is that this continuum case
yields behaviors that are in full agreement with the discrete case. And, in the
continuum case, the results go much farther.

In the next statement Γ(·) denotes the Gamma function, see for example [22,
5.2] for definitions and properties.
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Proposition 2.11. Recall that x = 4ε/σ2. For α ∈ (0,∞) \ Z we have for
ε↘ 0

4

σ2
γ0
σ,α(ε) = c1(α)x2 + . . .+ cbαc(α)x2bαc+ 2

Γ(1− α)

Γ(α)

(x
2

)2α

+O
(
xmin(2dαe,4α)

)
,

(2.71)
where cj(·) is an explicit rational function.

For α ∈ {1, 2, . . .} we have

4

σ2
γ0
σ,α(ε) = c1(α)x2+. . .+cα−1(α)x2(α−1)+(−1)α

22−2α

((α− 1)!)2
x2α log x+O

(
x2α
)
,

(2.72)
where cj(·) is the same rational function as in the non integer α case.

For α = 0 we have

γ0
σ,0(ε) =

σ2

4 (log(1/x)− γ + log 2)
+O

(
x2
)
, (2.73)

with γ = 0.577 . . . the Euler-Mascheroni constant.
Moreover the result for α < 0 is directly recovered from (2.71)-(2.72) by using

the identity
4

σ2
γ0
σ,α(ε)

α<0
= 2|α|+ 4

σ2
γ0
σ,|α|(ε) . (2.74)

The identity (2.74) is a simple consequence of the Bessel identity

xK1+α(x) = 2αKα(x) + xK−1+α(x) , (2.75)

that follows from (2.66) by integration by parts and by using the identity Kα(x) =
K−α(x) which follows by the change of variable y → 1/y in (2.66).

6. Proofs

Proof of Proposition 2.8. Several works are dedicated to diffusion approx-
imations. Here we exploit [25, pp. 266–272], notably [25, Assumptions (2.4)-(2.6),
Theorem 11.2.3]. Alternatively, one can resort to [9, Corollary 4.2 in Chapter 7]. It
is sufficient to check three hypotheses that we give in our set-up: recall (2.59)-(2.61)

• compute the local drift at x ∈ R2: uniformly for x = (x1, x2) in compact
sets

b∆ (x) =
EA∆x

∆
=

(
0 ε

εE
[
Z∆
] E[Z∆−1]

∆

)(
x1

x2

)
∆↘0−→ b (x) := b

(
x1

x2

)
, with b :=

(
0 ε

ε (1− α)σ
2

2

)
;

(2.76)
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• compute the diffusion matrix at x: again uniformly in x in compact subsets
of R2

a∆(x) := ∆−1E
[
A∆

(
x1

x2

)
(x1, x2)(A∆)∗

]
∆↘0−→ a(x) :=

(
0 0
0 σ2x2

2

)
; (2.77)

• ∆−1P(‖A∆‖ > c)→ 0 for every c > 0.

Then, since the stochastic differential system with drift b(·) and diffusion matrix
a(·) has unique (strong) solution, the Markov chain X∆ converges in law to the
diffusion process with drift b(·) and diffusion matrix a(·), which is precisely the
solution X to the stochastic differential system (2.65). This completes the proof of
Proposition 2.8. �

Remark 2.12. From the proof one readily sees that Proposition 2.8 holds well
beyond the Gaussian case. In fact it suffices to consider a family of positive random
variables {Z∆}∆∈(0,∆0) such that for some σ > 0 and α ∈ R we have

lim
∆↘0

E
[
Z∆ − 1

]
∆

=
1

2
σ2(1− α) and lim

∆↘0

E
[(
Z∆ − 1

)2
]

∆
= σ2 , (2.78)

and such that for every c > 0

lim
∆↘0

1

∆
P
(∣∣Z∆ − 1

∣∣ > c
)

= 0 . (2.79)

In addition, we can generalize Proposition 2.10 to the set up in this remark if we
assume also that

lim sup
∆↘0

∣∣∣∣E[1/Z∆]− 1

∆

∣∣∣∣ < ∞ . (2.80)

Proof of Proposition 2.9. We use the short-cut notation δ := σ2(1−α)/2 ∈
R and work with ε > 0 without loss of generality. We start by showing that the pro-
cess does not hit (0, 0). Recall that (X1(0), X2(0)) 6= (0, 0) and set τ(0,0) := inf{t >
0 : (X1(t), X2(t)) = (0, 0)}. For this let us consider R(t) :=

√
X2

1 (t) +X2
2 (t). By

Itô’s formula:

dR(t) =
X1

R
dX1 +

X2

R
dX2 +

1

2

X2
1

R3
d〈X2, X2〉

=

(
2ε
X1X2

R
+ δ

X2
2

R
+
σ2

2

X2
1X

2
2

R3

)
dt+ σ

X2
2

R
dBt

= R

(
2ε

Y

1 + Y 2
+ δ

Y 2

1 + Y 2
+
σ2

2

Y 2

(1 + Y 2)2

)
dt+R

(
σ

Y 2

1 + Y 2

)
dBt

=: RD dt+RQ dBt ,
(2.81)
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where Y := X2/X1 ∈ [−∞,∞] and D = D(t) and Q = Q(t) are uniformly bounded
continuous stochastic processes (‖D‖∞ ≤ 2ε+ |δ|+σ2/2 and Q ∈ [0, σ]), defined up
to τ(0,0). Since, again by Itô’s formula, we have

d logR(t) =

(
D(t)− 1

2
Q2(t)

)
dt+Q(t) dBt , (2.82)

we see that R(t)/R(0) is bounded away from zero on every compact time interval.
This readily yields a contradiction if P(τ(0,0) < ∞) > 0. Hence P(τ(0,0) < ∞) = 0
and we have proven that the process does not hit the origin.

Next we work under the assumption that both X1(0) > 0 and X2(0) > 0 and that
the diffusion does not hit the boundary of the quadrant in finite time: of course this
covers also the case X1(0) < 0 and X2(0) < 0 and for all the other cases it suffices
to show that the process does enter the (interior of the) first or third quadrant in a
(random) time that is in L1.

By Itô formula for Y = X2/X1 we obtain

dY =
(
ε
(
1− Y 2

)
+ δ Y

)
dt+ σY dBt , (2.83)

and we want to identify the invariant probability of (2.83) and show that there is
only one. Actually, for uniqueness we have to restrict to measures supported on the
first quadrant, but the trivial lack of uniqueness that is inherent to our problem is
irrelevant. But let us first show that there is one invariant probability.

For this we observe that the generator of the evolution (2.83) acts on C2 functions
f : (0,∞)→ R as

Lεf(y) =
(
ε(1− y2) + δ y

)
f ′(y) +

σ2

2
y2f ′′(y) =

σ2

2pε(y)

(
y2pε(y)f ′(y)

)′
, (2.84)

where pε(·) is the probability density

pε(y) =
1

Cεy1+α
exp

(
−2ε

σ2

(
y +

1

y

))
with Cε = 2Kα

(
4ε/σ2

)
, (2.85)

and Kα(·) is defined in (2.66). This makes evident the reversible nature of the
diffusion Y and, in particular, that pε(·) is an invariant probability density. But
the transformation S(t) := log Y (t) makes things even more straightforward: S is a
diffusion on R with additive noise and strongly confining potential:

dS = −U ′(S) dt+ σ dBt with U(s) := ε

(
exp(−s) + exp(s) +

ασ2

2ε
s

)
. (2.86)

An invariant probability of this diffusion is p̃ε(s) ∝ exp(−2U(s)/σ2) and the gener-

ator has the familiar symmetric form L̃εg = (σ2/2)(p̃εg
′)′/p̃ε, for g ∈ C2(R,R), see

for example [13, p.111], to which one can refer also for the ergodic properties of the
process and for the uniqueness of the invariant measure. We cite here one of the
first works dealing with this issue [19] and were one can find also the (Pointwise)
Ergodic Theorem we are going to apply next.
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For every choice of Y (0) ∈ (0,∞), almost surely and in L1 we have that

lim
t→∞

1

t
logX1(t) = ε lim

t→∞

1

t

∫ t

0

Y (s)ds = ε

∫ ∞
0

y pε(y) dy =
εKα−1 (4ε/σ2)

Kα (4ε/σ2)
,

(2.87)
where in the first step we have used the first identity in

X1(t) = X1(0) exp

(
ε

∫ t

0

Y (s) ds

)
,

X2(t) = X2(0) exp

(
ε

∫ t

0

1

Y (s)
ds− ασ

2

2
t+ σBt

)
,

(2.88)

which is directly derived from (2.65) and holds for all t > 0 if both X1(0) and X2(0)
are positive. The second step in (2.87) is the application of the Pointwise Ergodic
Theorem and the last one is an explicit computation. In the same way, by using the
second identity in (2.88) we get to (with x = 4ε/σ2)

lim
t→∞

1

t
logX2(t) = ε lim

t→∞

1

t

(∫ t

0

1

Y (s)
ds

)
− ασ

2

2

= ε

∫ ∞
0

1

y
pε(y) dy − ασ

2

2

=
σ2

4

(
xK1+α(x)

Kα(x)
− 2α

)
(2.75)
=

σ2

4

xK1−α(x)

Kα(x)
=

εKα−1 (4ε/σ2)

Kα (4ε/σ2)
,

(2.89)

which coincides with what we found in (2.87). This shows that both components
have the same exponential growth rate, hence also the norm of (X1(t), X2(t)), and
(2.68) is proven. If instead of starting from the first quadrant, we were starting from
the second quadrant, the result is unchanged if we show that the second quadrant
is abandoned after a random time that is in L1. And we have also to show that the
diffusion stays in the first quadrant if it starts from there. These facts are somewhat
intuitive if we consider the drift

This is somewhat intuitive by considering the drift in (2.83), but it does require
some analysis. In this the Feller test for explosion turns out to be very useful: we
refer to [6, pp. 183-184] for the details. �

Proof of Proposition 2.10. The proof uses the convergence of the process
over bounded times intervals, the ergodic properties of the process for ∆ > 0 and
some estimates on the invariant measure of the process with ∆ > 0 that are uniform
in ∆ ∈ (0,∆0) for some ∆0 > 0. The proof works under assumptions that are much
more general than the ones in Proposition 2.10, see Remark 2.12. For the moment
we just refer to [6, pp. 211-213] gfor the details of the proof. �

Proof of Proposition 2.11. Such a proof is way too heavy and uninterest-
ing, unless you are absolutely fond of Bessel functions. So we refer to [6] for the
real proof (that heavily exploits several known relations and asymptotic behaviors
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of special functions [22]). At the same time all these results are actually rather ele-
mentary, as it will be clear by the following proof of (2.71) in the case of α ∈ (0, 1)
(and without explicit control on the rest):

4

σ2
γ0
σ,α(ε)

x↘0∼ 2
Γ(1− α)

Γ(α)

(x
2

)2α

. (2.90)

For this we first recall that
4

σ2
γ0
σ,α(ε) =

xKα−1(x)

Kα(x)
, (2.91)

and that Kα−1(x) = K1−α(x), so (2.90) follows from

Kα(x)
x↘0∼ 1

2
Γ(α)

(x
2

)−α
, (2.92)

which holds for α > 0. To show (2.92) we simply write directly from (2.66)

Kα(x) =
1

2xα

∫ ∞
0

1

y1+α
exp

(
−1

2

(
x2y +

1

y

))
dy

∼ 1

2xα

∫ ∞
0

1

y1+α
exp

(
− 1

2y

)
dy =

1

2

(x
2

)−α ∫ ∞
0

zα−1e−z dz ,

(2.93)

and the integral in the very last term is Γ(α), so (2.92) is proven. �





CHAPTER 3

On Anderson localization in one dimension

1. Preliminary facts

Given a sequence of real numbers (Vn)n∈Z we are going to consider the operator
H = H(V ) defined by

(Hψ)n = (H0ψ)n + (V ψ)n = −ψn+1 − ψn−1 + Vnψn , (3.1)

for every ψ ∈ CZ and every n ∈ Z. So H0 is the discrete Laplacian without the
diagonal term and V is a diagonal operator. It is practical to introduce from now
the Wronskian W (ψ, φ) of ψ, φ ∈ CZ which is the sequence defined by

Wn(ψ, φ) = det

(
ψn+1 φn+1

ψn φn

)
= ψn+1φn − φn+1ψn . (3.2)

One directly verifies that the following Green’s formula holds: for every ψ, φ and
m ≤ n

n∑
k=m

((Hψ)kφk − ψk(Hφ)n) = Wm−1(ψ, φ)−Wn(ψ, φ) . (3.3)

Thanks also to the fact that Hψ = Hψ, Green’s formula directly yields that if we
choose D0 = {ψ ∈ CZ : |{n ∈ Z : ψn 6= 0}| < ∞} as domain of H, then H is
symmetric, that is 〈φ,Hψ〉 = 〈Hφ,ψ〉, where 〈φ, ψ〉 :=

∑
n φnψn.

For simplicity and conciseness we are going to choose supn |Vn| = ‖V ‖∞ < ∞,
so it is straightforward to see that H can be extended to `2(Z) := {ψ : ‖ψ‖2

2 =
〈ψ, ψ〉 <∞}. In fact, H is a bounded self-adjoint operator on `2(Z) and we remark
also that D0 is dense in `2(Z). More quantitatively:

‖Hψ‖2 ≤ ‖ψ·+1‖2 + ‖ψ·−1‖2 + ‖V·ψ·‖2 ≤ (2 + ‖V ‖∞)‖ψ‖2 . (3.4)

We are going to look for solutions to Hψ = Eψ for E ∈ C and for this the matrix
formalism is very useful because one readily sees that if we set for j ∈ Z

Yj :=

(
Vj − E −1

1 0

)
, (3.5)

and

Sn :=

{
YnYn−1 . . . Y0 for n = 0, 1, . . . ,

Y −1
n Y −1

n+1 . . . Y
−1

1 . . . for n = −1,−2, . . . ,
(3.6)

then for n = 0, 1, . . . (
ψn+1

ψn

)
= Yn

(
ψn
ψn−1

)
= Sn

(
ψ0

ψ−1

)
, (3.7)

45



46 3. ON ANDERSON LOCALIZATION IN ONE DIMENSION

and for n = −1,−2, . . . (
ψn
ψn−1

)
= Sn

(
ψ0

ψ−1

)
. (3.8)

Of course, implicit in what we did, was the remark that Yn is invertible: in fact,
det(Yn) = 1 for every n. We also remark that

Y −1
n =

(
0 1
−1 Vn − E

)
=

(
0 1
1 0

)(
Vn − E −1

1 0

)(
0 1
1 0

)
, (3.9)

that tells us that the Lyapunov exponents associated to (Yn) and (Y −1
n ) coincide.

This matrix representation of the solutions shows that the space of solutions to
Hψ = Eψ – all the solutions, not only the ones in `2(Z) – is a two dimensional
subspace of CZ that can be parametrized by the values of the two solutions on two
neighboring sites. In fact, it is practical to choose the two independent solutions
p = p(E) and q = q(E) such that

p0(E) = q−1(E) = 1 and q0(E) = p−1(E) = 0 , (3.10)

so
ψn = pn(E)ψ0 + qn(E)ψ−1 . (3.11)

Remark 3.1. It is also useful to recall that if Hψ = Eψ (ψ 6≡ 0) and Hφ = Eφ,
then Wn(ψ, φ) does not depend on n and Wn(ψ, φ) = 0 if and only if φ = cψ for some
c ∈ C. The fact that this Wronskian is constant follows because for n = 0, 1, . . .(

ψn+1 φn+1

ψn φn

)
= Sn

(
ψ0 φ0

ψ−1 φ−1

)
, (3.12)

and det(Sn) = 1 (the argument is identical for negative values of n). The second
statement is therefore just a well known linear algebra fact.

Remark 3.2. Remark 3.1 implies that the eigenvalues of H are simple. We say
that E is an eigenvalue of H if there exists ψ ∈ `2, ψ 6≡ 0, such that Hψ = Eψ.
We know a priori that the multiplicity of E is either 1 or 2, so we have to exclude
that the multiplicity is 2 (but the argument we are giving here does not use the fact
that we know that the multiplicity is bounded by 2). If φ is another eigenvalue then
Wn(ψ, φ) = C for every n. But ψ, φ ∈ `2 readily yields |∑nWn(ψ, φ)| <∞, that is
C = 0, which means that φ ∝ φ.

2. A mathematical approach to the physical viewpoint

Let us first stress that if we were really to talk about quantum mechanics we
should study the solutions to the Schroedinger equation (with unit mass and Plank
constant equal to one too)

i∂tψ(t) = Hψ(t) , (3.13)

with suitable initial condition that corresponds to the experiment we intend to
perform. We will instead concentrate on the time independent solutions to Hψ =
Eψ. These two problems are of course related, but we will not discuss the time
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dependent case (that would be needed to fully justify some of the assertions, from
a physical viewpoint).

Moreover, for the physical intuition, it is probably better to work with the no-
tation

(Hψ)n = −ψn+1 − ψn−1 + 2ψn + V ′nψn , (3.14)

where V ′n = Vn − 2. Note that for V ′ ≡ 0, then Hψ = Eψ has solutions that do
not grow exponentially at +∞ or −∞ if and only if E ∈ [0, 4]: for E ∈ (0, 4) these
solutions are actually bounded and they are the plane waves exp(±ikn), k ∈ [0, 2π),
and E = 2(1− cos(k)).

Remark 3.3. We briefly discuss the classical (i.e., non quantum) case: analo-
gous to the problem we consider is the case of a particle of mass one that evolves in
a potential V (x), with V (x) = 0 for x ≤ 0 and x ≥ L, and V (x) > 0 in (0, L). You
should think of something close to a square barrier (because it is closer to what we do
next), but we may consider any potential V (·) in C1 with maxx V (x) = U > 0 and
such that V ′(x) < 0 for x ∈ (L− c, L) and V (L− c) = U . Then ẍ(t) = −V ′(x(t)),
with x(0) > L and ẋ(0) = −v0 < 0. By integrating ẋ(t)ẍ(t) = −ẋ(t)V ′(x(t))
and by using the fact that the potential is zero at the starting point we obtain
(ẋ(t))2 = v2

0 − 2V (x(t)) which tells us that the particle will go past the bump if
and only if the kinetic energy of the particle at time zero, i.e. v2

0/2, is larger than
the barrier, i.e. U . Otherwise the particle will bounce back or, when v2

0/2 = U ,
the particle stops at the top of the barrier. This is simply because if t0 is such that
v2

0 = 2V (x(t0), then ẍ(t0) = −V ′(x(0)) which is strictly positive as long as v2
0/2 < U .

2.1. The free Hamiltonian (V ≡ 0). We go ahead by steps and we stress
that we do not use the convention of Fig. 1 and of (3.14). In particular, the energy
E of a wave will be in [−2, 2] and not in [0, 4]. With reference to the caption of
Fig. 1, the tunneling condition E < U becomes E < U − 2.

The first step is to consider the case V ≡ constant, which is equivalent to the case
V ≡ 0. So H = H0. For k ∈ [0, 2π) we define the ψ→k and ψ←k by ψ→k,n = exp(ikn)
and ψ←k,n = exp(−ikn). So for V ≡ 0 and E = −2 cos(k) we have

H0ψ
→
k = Eψ→k and H0ψ

←
k = Eψ←k . (3.15)

This actually fully solves H0ψ = Eψ for E ∈ (−2, 2) because we have found two
independent solutions. Since by direct computation one sees that the solutions to
H0ψ = Eψ for |E| > 2 have exponential growth at +∞ or −∞, these values of
E do not belong to the spectrum of H0 (this will be explained in detail later on:
see Proposition 3.12). We skip the analysis of the cases E = ±2. Focusing on the
solutions for |E| < 2 we observe that they are superpositions of the wave ψ→k , that
goes to the right, and of the wave ψ←k that goes to the left. In order to get convinced
that this is not just a convention one should actually consider the time evolution,
i.e. (3.13), of wave packets. This is one of the more physical aspects we will no
discuss.
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Vn

U

0 nL

incident wave

reflected wave

transmitted wave

Figure 1. As we have quickly discussed in Rem. 3.3, when a classical particle
encounters an obstacle, it will either cross the obstacle (if its kinetic energy before
the barrier is larger than the energy barrier) or it is kicked back (if it is smaller).
In quantum mechanics when a particle (or wave) approaches an obstacle (in the
image, from the right) there will be a reflected wave and a transmitted wave. If
the amplitude of the of the incoming wave of energy E is i (w.l.o.g., i = 1), the
reflected wave is characterized by a complex number r and the transmitted wave
is characterized by another complex number t. We expect that the conservation
law |t|2 + |r|2 = 1. Actually (recall the discussion just before Rem. 3.3), waves
can have energies E ∈ [0, 4] (we are using (3.14), not (3.1)!). Here is what can
happen:
(1) If E > U then the size |t| of the transmitted wave does not depend on how
large L is: in particular, one can have |t| = 1 or close to 1, hence |r| = 0 or very
small, for L arbitrarily large. In fact, we will see that t is never zero.
(2) If E < U then |t| decays exponentially with L: this is the tunneling effect,
i.e. the wave overcomes the obstacle even if its energy is lower than the height the
obstacle, but the intensity of the transmitted wave is exponentially small in the
length of the obstacle.
If we now introduce randomness in the potential (think of the top of the barrier
that, instead of being flat, wiggles) then, no matter how weak the randomness
is, we are going to be in the tunneling regime and the transmitted wave has an
amplitude which is exponentially weak in L. This is the Anderson localization
effect: waves hardly propagate in a disordered potential.

2.2. Square potential case: the quantum tunneling effect. We now con-
sider the case is which we introduce an obstacle in our system and we consider the
simple case Vn = U1n∈[1,L], L ∈ N. This is schematically presented in Fig. 1: a wave
of wavenumber k, hence energy E = −2 cos(k), comes from +∞ toward the bump.
What happens is that there will be a reflected wake and a transmitted wave. In order
to solve this problem we start from the fact that on the left of the bump there will be
only a transmitted wave: ψn = t exp(−ikn) for n ≤ 0, where t ∈ C. Note that this
implies also that ψ1 = t exp(−ik). For n > L (and therefore also for n = L as we
deduce from (3.1)) we have instead ψn = exp(−ikn) + r exp(ikn), where r ∈ C and
|r| is the amplitude of the reflected wave. We just have to solve H0ψn = (E −U)ψn
for n = 1, 2, . . . , n, with the boundary conditions ψ1 = t exp(−ik), ψ0 = t and
ψn = exp(−ikn) + r exp(ikn) for n = L and n = L+ 1.
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At a physical level, we do expect that the amplitude of the wave that hits the
obstacle should match the amplitudes of reflected and transmitted waves, i.e. we
expect |t|2 + |r|2 = 1. We will see that this is true well beyond this first example
and it holds also in the fully inhomogeneous setting.

We solve Hψn = (E − U)ψn by looking for solutions of the form λn. It is just a
matter of solving

λ2 + (E − U)λ+ 1 = 0 =⇒ λ1,2 =
1

2

(
U − E ±

√
(U − E)2 − 4

)
. (3.16)

Of course these two solutions are also the eigenvalues of Yn (see (3.5)) when Vn = U :
since the determinant of this matrix is one we have λ1λ2 = 1, which is of course
evident also from (3.16). Therefore λ1 and λ2 are complex conjugate solutions if
|E − U | < 2 and in this case they both have absolute value one. So, also inside the
bump, the solutions are waves, just with a wave number that is not k. On the other
hand for |E − U | > 2 both solutions are positive: one is larger than one, the other
one is smaller than one.

• If |E−U | < 2 – i.e. U ′ = U−2 < E, because E < 2+U is trivially verified (U > 0)
– the solution of H0ψ = (E−U)ψ is given by ψn = c→ exp(ik′n) + c← exp(−ik′n),
with k′ ∈ [0, 2π) determined by U − E = 2 cos(k′) and n ∈ {0, . . . , L + 1}. Since
ψ0 = t and ψ1 = t exp(−ik) we find

c→ = t
exp(−ik)− exp(−ik′)
exp(ik′)− exp(−ik′) and c← = t

exp(ik′)− exp(−ik)

exp(ik′)− exp(−ik′) . (3.17)

In turn, we want also that ψn = exp(−ikn) + r exp(ikn) for n = L and n = L+ 1.
This way we can determine the values of t and r:

t = e−iL(k−k′)
(
e2ik − 1

) (
e2ik′ − 1

)
1− e2i(k+k′L) + 2ei(k+k′+2k′L) − 2ei(k+k′) + e2i(k+k′) − e2ik′(L+1)

,

r = e−i(2kL+k)

(
eik − eik′

) (
ei(k+k′) − 1

) (
e2ik′L − 1

)
e2i(k+k′L) − 2ei(k+2k′L+k′) + 2ei(k+k′) − e2i(k+k′) + e2ik′(L+1) − 1

,

(3.18)

and one can check that |t|2 + |r|2 = 1. Note in particular that |t| (and |r|) are just
periodic functions of L (the period is π/k′).
• If |E − U | > 2 – i.e. U ′ = U − 2 > E – the solution of Hψ = (E − U)ψ is given

by ψn = c1λ
n + c2λ

−n, with λ > 1 > 0. Once again we can determine the values
of t and r (once again, they satisfy |t|2 + |r|2 = 1), but in this case

t =

(
1− e2ik

)
(λ2 − 1) e−ikLλL

(eik − λ)2 λ2L − (eikλ− 1)2

L→∞∼ λ−L
(
1− e2ik

)
(λ2 − 1)

eikL (eik − λ)2 ,

r = −e
−2ikL

(
λ2L − 1

)
(λ2 − 2λ cos(k) + 1)

(eik − λ)2 λ2L − (eikλ− 1)2 =
e−2ikL+iπ

((eik − λ) / |eik − λ|)2 +O
(
1/λL

)
.

(3.19)

In particular, 1 − |r| = O(1/λL), so the reflection in this case is much stronger
and there is a natural penetration length (1/ log λ) of the wave into the obstacle.
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Figure 2. The plot of |t|2 (in blue) and of |r|2 (in violet) as a function of L over

one period. In both cases k′ = ±π/6, which means U − E = 2 cos(k′) =
√

3. The
value of k instead is ±2π/3 (i.e., E = −1) on the left and k = ±π/3 (i.e., E = 1)

on the right. So in the first case the potential is lower: U =
√

3− 1, with respect
to U =

√
3 + 1 in the second case.

2.3. Disordered potentials. We now consider the case in which Vn is random
for n ∈ {1, . . . , L}. More precisely we consider an IID sequence (Un)n=1,2,... of
bounded non trivial, i.e. non constant, random variables, and then we define Vn :=
Un for n = 1, . . . , L and Vn = 0 otherwise.

To fix the ideas and as a remarkable example one can think of the case in which
U1 has mean U > 0 and very small variance, so we are rather close to the case
treated in Section 2.2, but we stress that the arguments that follow are general.

We can consider the same set-up of Section 2.2. In this case the matrix formalism
is going to be very useful. So we consider again an incident wave that comes from
+∞ and we foresee the presence of a reflected wave, so ψn = exp(−ikn)+r exp(ikn)
for k = L,L+1, . . . and, with E = −2 cos(k), (Hψ)n = Eψn for n = L+1, L+2, . . ..
Again, to the left of the obstacle there will be only the transmitted wave: ψn =
t exp(−ikn) for n = 1, 0,−1, . . . and (Hψ)n = Eψn also for n = 0,−1, . . . By (3.5)–
(3.7) we have for n = 1, . . . , L(

ψn+1

ψn

)
= YnYn−1 . . . Y1

(
ψ1

ψ0

)
, (3.20)

with

Yj :=

(
Uj − E −1

1 0

)
, (3.21)

and of course ψ1 = t exp(−ik) and ψ0 = t. In the next statement we make explicit
the dependence on L of t and r by writing t(L) and r(L).

Proposition 3.4. For every choice of E ∈ R the Lyapunov exponent γ of
the product of the random matrices (Yn) is positive. Moreover, if E ∈ (−2, 2) the
transmittal and reflection coefficients t(L) and r(L) are well defined, they satisfy
|t(L)|2 + |r(L)|2 = 1 and, almost surely, |t(L)| = O (exp(−γ′L)) for L→∞ and
γ′ < γ.
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Therefore if we choose E[U1] > 0, |E[U1] − E| < 2 and var(U1) very small we
are close to the case of the previous section in which essentially the wave can go
through the obstacle for L arbitrarily large. Now instead, for L large there will be
almost no transmitted wave. One can probably come to terms with this by arguing
that if the variance is small then γ > 0 is close to zero, and the penetration length
1/γ is large. Nevertheless, Proposition 3.4 is telling us that wave propagation is not
compatible with the presence of disorder in one dimension.

Proof of Proposition 3.4. First of all in the support of the law of U1 there
are a least two values u0 6= u1. The corresponding matrices have have the form

Mj =

(
aj −1
1 0

)
, (3.22)

with aj = E − uj. Since

M := M0M
−1
1 =

(
a0 −1
1 0

)(
0 1
−1 a1

)
=

(
1 a0 − a1

0 1

)
, (3.23)

by taking powers of M we readily see that the group that contains the support
of the law of Y1 is non compact. The irreducibility follows by observing that
limnM

nx/‖Mnx‖ = (1, 0) and of course the ray associated to this direction is in-
variant. So, if there is a finite union of rays that is invariant under the action of all
the elements of the group spanned by the support of the measure, it must coincide
with the ray that goes through y = (1, 0). But this is impossible because M−1

j y is
not collinear with y.

Therefore, by Theorem 1.7 (Furstenberg Theorem), we have that γ > 0.

Now we recall that we are interested in

YnYn−1 . . . Y1

(
cos(k)− i sin(k)

1

)
, (3.24)

times the transmittal coefficient t ∈ C. But, again by Theorem 1.7, we know that
almost surely the logarithm of the norm of the real part of the vector in (3.24)
behaves like nγ for n large. In fact, the same is true also also for the imaginary part
because we are excluding k = 0 and k = π (i.e. E = ±2).

Next step is writing

t(L)YLYL−1 . . . Y1

(
cos(k)− i sin(k)

1

)
=

(
exp(−ik(L+ 1)) + r(L) exp(ik(L+ 1))

exp(−ikL) + r(L) exp(ikL)

)
.

(3.25)
We claim that also in this case we have |r(L)|2 + |t(L)|2 = 1 (see Lemma 3.5).
Therefore the norm (in C2: ‖(z, w)‖2 = |z|2 + |w|2) of the right hand side of (3.25)
is bounded by

√
2(1 + |r(L)|) because the absolute value of each one the two entries

of the vector is bounded by 1 + |r(L)|, while the norm of the left-hand side is equal
to

|t(L)|
∥∥∥∥YLYL−1 . . . Y1

(
cos(k)− i sin(k)

1

)∥∥∥∥ , (3.26)
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and we know that the norm that multiplies |t(L)| grows with the correct exponential
rate because real and imaginary parts do (for v ∈ C2 we have ‖v‖2 = ‖<v‖2+‖=v‖2).
This implies the claimed (almost sure) exponential decay of |t(L)|. �

Lemma 3.5. For every k ∈ (0, 2π) \ {π}, L = 0, 1, 2, . . . and every choice of
the real numbers a1, a2, . . . we have that there exists a unique choice of (t, r) ∈ C2

such that

t

(
aL −1
1 0

)(
aL−1 −1

1 0

)
. . .

(
a1 −1
1 0

)(
exp(−ik)

1

)
=(

exp(−ik(L+ 1)) + r exp(ik(L+ 1))
exp(−ikL) + r exp(ikL)

)
, (3.27)

where the matrix product should be read as the identity matrix if L = 0. Moreover
t 6= 0 and |t|2 + |r|2 = 1.

Proof. The solution exists and it is unique because (3.27) can be written, with
obvious definition of the matrix T (of determinant 1), as

t T

(
exp(−ik)

1

)
=

(
exp(−ik(L+ 1)) exp(ik(L+ 1))

exp(−ikL) exp(ikL)

)(
1
r

)
=: M

(
1
r

)
, (3.28)

and the matrix M has determinant −2i sin(k) 6= 0. Therefore with A := M−1T

tA

(
exp(−ik)

1

)
=

(
1
r

)
, (3.29)

Since det(A) 6= 0 we see that t 6= 0. We therefore have an expression for the vector
(1/t, r/t) and r and t are uniquely identified.

We are now at the key point of showing that |t|2 + |r|2 = 1. We do this by
looking at the action of one matrix at time, see Figure 3. For ` = 1, . . . , L, but in
fact ` can be seen as an arbitrary integer number, the action of the matrix on the
wave function between `− 1 and ` on the basis of ψ←k,· and ψ→k,· yields(

v −1
1 0

)(
a′e−ik` + b′eik`

a′e−ik(`−1) + b′eik(`−1)

)
=

(
ae−ik(`+1) + beik(`+1)

ae−ik` + beik`

)
(3.30)

where where v = U`+1 − E is at this stage just and arbitrary real number. Note
that the (complex) coefficients a and a′ are the amplitudes of the waves going from
right to left, respectively before and after going through the potential slice at `. In
the specular way, b and b′ are the amplitudes of the waves going from left to right,
respectively after and before going through the potential. What we want to show is
that, regardless of the value of v, we have the conservation law |a|2−|b|2 = |a′|2−|b′|2
which is possibly more clear in the non symmetric version |a|2 + |b′|2 = |a′|2 + |b|2
which means that what goes in must come out. We rewrite (3.30) as(

a
b

)
= A−1

`+1

(
v −1
1 0

)
A`

(
a′

b′

)
(3.31)
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v

! ! + 1

a

b

a′

b′

Figure 3. The effect of a slice of potential. The waves going from right to left
are two: one, with intensity a, is incoming and one, with intensity a′ is outgoing
(transmitted). In the same way the waves from left to right are an incoming one
with intensity b′ and and outgoing one with intensity b. Therefore we expect
|a|2 + |b′|2 = |a′|2 + |b|2.

where we have introduced the matrix

A`(k) = A` :=

(
e−ik` eik`

e−ik(`−1) eik(`−1)

)
, (3.32)

and we note that det(A`) = e−ik−eik = −2i sin(k). Therefore |a|2−|b|2 = |a′|2−|b′|2
holds if

A∗`

(
v 1
−1 0

)(
A−1
`+1

)∗(1 0
0 −1

)
A−1
`+1

(
v −1
1 0

)
A` =

(
1 0
0 −1

)
=: D . (3.33)

It is therefore a matter of a computation (remark that the result does not depend
on the value of `):(

A−1
`

)∗
DA−1

` = − 1

4(sin(k))2

(
e−ik(`−1) −eik(`−1)

−e−ik` eik` ,

)(
eik(`−1) −eik`
e−ik(`−1) −e−ik`

)
= − 1

4(sin(k))2

(
0 −2i sin(k)

2i sin(k) 0

)
=

i

2 sin(k)

(
0 1
−1 0

)
,

(3.34)

so (
v 1
−1 0

)(
A−1
`+1

)∗
DA−1

`+1

(
v −1
1 0

)
=

1

2i sin(k)

(
v 1
−1 0

)(
0 1
−1 0

)(
v −1
1 0

)
=

i

2 sin(k)

(
0 1
−1 0

)
.

(3.35)
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Finally

A∗`

(
0 1
−1 0

)
A` =

(
eik` eik(`−1)

e−ik` e−ik(`−1)

)(
e−ik(`−1) eik(`−1)

−e−ik` −eik`
)

= 2i sin(k)

(
1 0
0 −1

)
.

(3.36)

Therefore (3.33) holds and we are done. �

3. Operator viewpoint on localization

Let us first introduce some important tools in our analysis. First of all, the
spectrum Σ(A) of a bounded operator A is the complement of the set of λ ∈ C such
that A − λI (I is the identity) has an inverse: note that, since A is bounded, such
an inverse is necessarily bounded. Σ(A) is closed, bounded and not empty.

We are focusing on A = H and H self-adjoint (and we recall that we work on
`2 = `2(Z)). Therefore Σ(H) ⊂ R. If H is random, a priori also Σ(H) is random.
However:

Proposition 3.6. If (Vn) is an IID sequence then for almost all realizations
of this sequence we have that Σ(H) = [−2, 2] + Supp(PV ) := {x + y : x ∈
[−2, 2], y ∈ Supp(PV )}, where PV is the law of V1.

Proof. Recall the definion of H = H0 + V in (3.1). Let us first point out
that [−2, 2] is the spectrum of the operator H0 as can be seen by direct com-
putation, plus some operator theory considerations. In fact it suffices to remark
that ‖H0‖ = supψ: ‖ψ‖=1 ‖H0ψ‖ ≤ 2 so Σ(H0) ⊂ [−2, 2] and, for ψn = exp(ikn),

H0ψ = −2 cos(k)ψ, so Σ(H0) ⊃ [−2, 2]. Note that ψ 6∈ `2, but if we define ψ(L) by
setting (ψ(L))n = ψn/

√
2L+ 1 if |n| ≤ L and (ψ(L))n = 0 otherwise, then one readily

sees that ‖H0ψ
(L) +2 cos(k)ψ(L)‖ = O(1/

√
L) which means that −2 cos(k) ∈ Σ(H0).

Not only, this actually means that −2 cos(k) is not an isolated eigenvalue of finite
multiplicity (more on the spectrum of H0 in Remark 3.8). All of this is consequence
of the following fundamental result that we will repeatedly use (we give it in the
restricted framework of self-adjoint operators, see for example [26, Lemma 2.16 and
Lemma 6.17] for a proof and more):

Lemma 3.7 (Weyl’s criterion). For T self-adjoint, λ ∈ Σ(T ) if and only if
there exists a sequence of (ψn), called “Weyl sequence”, with ‖ψn‖ = 1 for every
n such that

lim
n
‖(T − λI)ψn‖ = 0 . (3.37)

Moreover, λ ∈ Σ(T ) is not an isolated eigenvalue of finite multiplicity if and only
if there exists (ψn) with ‖ψn‖ = 1 such that (3.37) holds and limn(ϕ, ψn) = 0
for every ϕ such that ‖ϕ‖ < ∞. In this case (ψn) is called “singular Weyl
sequence”.
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The important part of the statement for us is the first one. The second part is
included as a sanity check : we stress that by isolated eigenvalue we mean isolated
in the whole spectrum, i.e. that there exists ε > 0 such that Σ(T ) ∩ {z : |z − λ| <
ε} = {λ}. But in reality we will prove Proposition 3.6, which implies that there is
no isolated point in Σ(H) (otherwise said, no subset of the spectrum is discrete, or
that there is no discrete spectrum), without using the second part of Lemma 3.7.

The operator V instead is diagonal in the orthonormal basis (ek)k∈Z, defined by
ekn = δn,k (Kronecker delta). If is then clear that, almost surely, the spectrum of V
is Supp(PV ). Note that the spectrum of V is never discrete, not even if the sequence
(Vk) takes only a finite number of values. This is due to the fact that there are
either eigenvectors of infinite multiplicity and/or the eigenvalues are not isolated.
This can is directly seen, but it is helpful to see it also through Lemma 3.7: for
example, if (Vk) takes only a finite number of values, the some value λ is taken up
infinitely many times, i.e. Vk = λ for k ∈ I = {i1, i2, . . .} ⊂ Z, |I| = ∞. So the∑n

k=1 e
ik/
√
n forms a singular Weyl sequence (of eigenfunctions this time!).

Both H0 and V are bounded self-adjoint operators, as H = H0 + V is. In
this context it is not difficult to see that max Σ(H) ≤ max Σ(H0) + max Σ(V ) and
that min Σ(H) ≥ min Σ(H0) + min Σ(V ). It is in fact a direct consequence of the
statement for self-adjoint operators (see [26, Th. 2.20])

max Σ(T ) = sup
ψ: ‖ψ‖=1

(ψ, Tψ) and min Σ(T ) = inf
ψ: ‖ψ‖=1

(ψ, Tψ) . (3.38)

Therefore Σ(H) ⊂ [−2, 2] + Supp(PV ) is established. The opposite inclusion fol-
lows from the first part of Weyl criterion (Lemma 3.7)). In fact it is straightforward
to see that almost surely for every E ∈ Supp(PV ), every L ∈ N and every ε > 0 one
can find N ∈ Z such that Vn ∈ [E−ε, E+ε] for every n = N+1, N+2, . . . , N+L. We

then consider, for k ∈ [0, 2π), ψn = exp(ikn)/
√
L) for n = N + 1, N + 2, . . . , N +L,

and ψn = 0 otherwise. It is therefore easy to see that

‖(H − EI)ψ‖ ≤ ε+O(1/
√
L) , (3.39)

where the O(1/
√
L) correction comes from the contribution near 0 and L. Therefore,

by choosing a sequence of (Ln) going to∞ and of (εn) that goes to zero we see that
E−2 cos(k) belongs to Σ(H). This completes the proof, but we add the observation
that of course the Weyl sequence we built is singular, since there is no isolated point
in the spectrum. �

Now we keep going for a while with (Vn) an arbitrary bounded real sequence.
Since H is a bounded operator, f(H) is directly defined for every polynomial func-
tion f(·) and, by approximation, the definition can be extended to f ∈ C0(R;R).
Therefore, thanks to the Riesz-Markov Theorem, for every ψ ∈ `2 there exists a
unique measure µψ – we call it spectral measure associated to ψ – such that

(f(H)ψ, ψ) =

∫
R
f(λ)µψ( dλ) , (3.40)

for every f ∈ C0(R;R). Let us remark that the support of µψ is contained in Σ(H):
in fact, since the spectrum is a closed set, if λ0 ∈ R \ Σ(H) then λ ∈ R \ Σ(H)
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if |λ − λ0| ≤ δ for some δ > 0. Hence C := supλ: |λ−λ0|≤δ ‖(Hψ − λ)−1‖ < ∞ and

therefore
∫
R(λ′ − λ)2µψ( dλ′) ≤ C2 which implies

∫ λ0+ε

λ0−ε

∫
R(λ′ − λ)2µψ( dλ′) dλ ≤

2εC2. But
∫ λ0+ε

λ0−ε (λ′ − λ)2 dλ = ∞ for every λ′ ∈ (λ0 − ε, λ0 + ε) and this implies

that µψ((λ0 − ε, λ0 + ε)) = 0.
In fact, f(H) is defined also for less regular functions, notably indicator functions

of measurable sets and we have

µψ(B) = (1B(H)ψ, ψ) , (3.41)

for every Borel subset B of R. Note that µψ is a positive measure also if ψ takes
complex values.

In the same way for every ψ, ϕ ∈ `2 we can introduce the measure µψ,ϕ defined
by

µψ,ϕ(B) = (1B(H)ψ, ϕ) , (3.42)

which is a complex measure if ψ and ϕ take values in C.
Another important result we borrow from functional analysis is that the Hilbert

space `2 can be decomposed into three orthogonal subspaces that are H invariant:
with� to denote absolutely continuous with respect to and λ the Lebesgue measure
on R we introduce

ha := {ψ ∈ `2 : µψ � λ} , hs := {ψ ∈ `2 : µψ 6� λ and µψ({x}) = 0 ∀x} ,

hp :=

{
ψ ∈ `2 : µψ =

∑
j

cjδxj for a suitable choice of (cj) and (xj)

}
. (3.43)

Note that here we have exploited the Lebesque decomposition of a measure:

µψ = µa
ψ + µs

ψ + µp
ψ , (3.44)

i.e., that every measure on R can be written as sum of three mutually singular
measures: one absolutely continuous with respect to the Lebesgue measure, one
singular with respect to Lebesgue (but for which the measure of every point is zero)
and one that is pure point. We can therefore consider the spectrum of the restriction
of H to each one these three subspaces and

Σ(H) = Σa(H) ∪ Σs(H) ∪ Σp(H) . (3.45)

In general these three spectra – absolutely continuous, singular, pure point – are
not disjoint.

Remark 3.8. Let us discuss the spectrum of H0 as an example. The spectrum
of H0 can be understood in detail thanks to the fact that H0 (on `2) is unitarily

equivalent to the operator Ĥ0 on L2 of [0, 2π) equipped with the Lebesgue measure

defined by Ĥ0f(k) = −2 cos(k)f(k). The unitary operator that links the two spaces

is of course the Fourier Transform ψ̂(k) =
∑

n exp(ikn)ψn/
√

2π. By exploiting this

equivalence it becomes evident that [−2, 2]{ is not in the spectrum: to show that
Σ(H0) = [−2, 2] requires in any case Weyl’s criterion (Lemma 3.7). But we can
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also make the spectral measure associated to ψ explicit. In fact for ψ ∈ `2 and
t ∈ [−2, 2] = Σ(H0)

µψ((−∞, t]) =
(
1[−2,t]ψ, ψ

)
=

∫ 2π

0

|ψ̂(k)|21−2 cos(k)≤t dk

=

∫ arccos(−t/2)

0

|ψ̂(k)|2 dk +

∫ 2π

2π−arccos(−t/2)

|ψ̂(k)|2 dk , (3.46)

so µ is absolutely continuous with respect to the Lebesgue measure with density

1(−2,2)(t)

(∣∣∣ψ̂(arccos(−t/2))
∣∣∣2 +

∣∣∣ψ̂(2π − arccos(−t/2))
∣∣∣2)/(2

√
1− t2/4

)
.

(3.47)
Hence the spectrum of H0 is absolutely continuous: Σ(H0) = Σa(H0) and Σs(H0) =
Σp(H0) = ∅.

The definition (3.45) depends a priori on the choice of ψ. But it is possible to
make a canonical (and, in a sense, also optimal) choice for the spectral measure.
For this we recall the orthonormal basis (ek)k∈Z, defined by ekn = δn,k used above.
Note that

(
ψ, ek

)
= ψk. Moreover we use the notations µn,k for µen,ek and µn for

µen . Here is our choice for the spectral measure:

µ = µ−1 + µ0 . (3.48)

Of course µ is not a probability, but, since µ/2, is we will at times write µ( dλ)-
almost surely, referring to µ/2. Recall now the definition of pn(λ) and qn(λ) from
(3.10). In particular, Hp(λ) = λp(λ) and Hq(λ) = λq(λ).

Lemma 3.9. pn(H)e0 + qn(H)e−1 = en for every n ∈ Z.

Proof. p0(H) = q−1(H) is the identity operator and q0(H) = p−1(H) is multi-
plication by 0. So the cases n = 0 and n = −1 hold. We then proceed by induction
in the two directions by exploiting that for every k we have

Hek = −ek+1 − ek−1 + Vke
k . (3.49)

So we want to show pm(H)e0 +qm(H)e−1 = em for m = n+1 if we know it for m = n
and m = n − 1, with n = 0, 1, 2, . . . (respectively, for m = n − 1 if we know it for
m = n and m = n+ 1, with n = −1,−2, . . .). This is just a matter of applying H to
pm(H)e0 + qm(H)e−1 = em and of using repeatedly (3.49). Here is one of the steps
(going down): we know the result for n and n+1 so Hpn(H)e0 +Hqn(H)e−1 = Hen

can be developed and reordered into

pn−1(H)e0 + qn−1(H)e0 − en−1 =

− pn+1(H)e0 − qn+1(H)e0 + en+1 + Vn

(
pn(H)e0 + qn(H)e0 − en

)
. (3.50)

Since the right-hand side is zero by the induction assumption, the proof is complete.
�
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Here is why µ may be considered the spectral measure of interest for our problem.

Lemma 3.10. For every ψ ∈ `2 we have that µψ � µ.

Proof. First of all 0 = µ(B) = µ−1(B) + µ0(B) implies that

‖1B(H)e0‖2 =
(
1B(H)e0,1B(H)e0

)
=
(
1B(H)e0, e0

)
= µ0(B) = 0 , (3.51)

so 1B(H)e0 = 0 ∈ `2 and the very same argument yields also 1B(H)e−1 = 0. But
then Lemma 3.9 directly yields that 1B(H)en = 0 for every n. Since (en) is a basis
of `2 we directly have the claim (in fact, 1B(H) = 0). �

Proposition 3.11. We have that Σa(H) = Supp(µa), Σp(H) = Supp(µp)
and Σs(H) = Supp(µs). Moreover E is an eigenvalue of H (i.e., there exists
ψ ∈ `2 non zero such that Hψ = Eψ) if and only if µ({E}) > 0.

Proof of Proposition 3.11. This is based on the first part of Weyl’s crite-
rion (Lemma 3.7).First of all we remark that for the three spectrum-support equal-
ities it suffices to give the argument for Σ(H) = Supp(µ): the same argument can
be repeated for the three different orthogonal spaces (that are H-invariant). So
E ∈ Σ(H) if and only if limn

∫
(t − E)2µψn( dt) = 0 with ψn ∈ H and ‖ψn‖ = 1,

i.e. µψn(R) = 1. In particular we have that µψn ⇒ δE. Now if E ∈ Σ(H) then for
every ε > 0 we have that µψn((E − ε, E + ε)) ≥ 1/2 for n sufficiently large, which
implies that µ((E − ε, E + ε)) > 0 by Lemma 3.10, so E ∈Supp(µ). On the other
hand, if E 6∈ Supp(µ) then µ((E − ε, E + ε)) = 0 for some ε > 0, hence, always by
Lemma 3.10, µψn((E − ε, E + ε)) = 0 for every n and therefore µψn 6⇒ δE, hence
E 6∈ Σ(H).

We are left with showing that E is an eigenvalue of H if and only if µ({E}) > 0.
We know that, for every ψ ∈ `2, ‖(H − EI)ψ‖ =

∫
(t − E)2µψ( dt). So ψ is an

eigenfunction with eigenvalue E if an only if µψ({E}{) = 0 or, equivalently, µψ ∝ δE.
Therefore, by Lemma 3.10, ψ is an eigenfunction with eigenvalue E if an only if
µ({E}) > 0. �

It is now practical to introduce a measure valued matrix associated to H:

M :=

(
µ0 µ−1,0

µ0,−1 µ−1

)
. (3.52)

We note that this matrix is symmetric and that its trace is µ. A less immediate
observation is that

µm,n( dE) = (pm(E), qm(E))M( dE)

(
pn(E)
qn(E)

)
, (3.53)
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which follows because for every Borelian B by Lemma 3.9 we have

µm,n(B) = (1B(H)em, en) = (1B(H)em,1B(H)en)

=
(
pm(H)1B(H)e0 + qm(H)1B(H)e−1, pn(H)1B(H)e0 + qn(H)1B(H)e−1

)
=

∫
B

pm(E)pn(E)µ0( dE) +

∫
B

qm(E)qn(E)µ−1( dE)

+

∫
B

(pm(E)qn(E) + pn(E)qm(E))µ0,−1( dE) .

(3.54)

It is actually practical to use that M � µ and work with the density M(·) of M

with respect to µ. Without surprise, S(E) is symmetric µ( dE)-almost everywhere.
Moreover it is also non negative (as a matrix), which is a direct consequence of the
fact that M(B) ≥ 0 as a matrix, for every Borelian B, and this last fact follows by
observing that for every x ∈ R2

〈x, M(B)x〉 = x2
1µ0(B) + x1x2 (µ0,−1(B) + µ−1,0(B)) + x2

2µ−1(B)

= ‖x11B(H)δ0 + x21B(H)δ−1‖2 ≥ 0 .
(3.55)

We are now ready to prove an important result about generalized eigenvectors.

Proposition 3.12. µ( dE)-a.s. there exists ψ such that Hψ = Eψ and, for

every ε > 0, ψn = O(n
1
2

+ε) for |n| → ∞.

Proof. In the whole proof we work µ( dE)-almost surely. As we have seen,
M(E) is symmetric and non negative. Moreover, since the trace of M is the measure
µ, the trace of M(E) is one. So there exists a (real) orthogonal matrix A = A(E)
such that

A

(
a 0
0 b

)
A∗ , (3.56)

with a ≥ b ≥ 0 and a+ b = 1, so a ≥ 1/2. Therefore if we use (3.53) for n = m and
hiding the dependence on E we obtain

dµn = (pn, qn)A

(
a 0
0 b

)
A∗
(
pn
qn

)
dµ . (3.57)

The key point now is to remark that the two entries of the vector (pn, qn)A, for
n ∈ Z, are the solutions to Hψ = Eψ with conditions at the origin given by the
columns of A (recall (3.11)): this becomes clearer if we write write

A =

(
ψ0 ϕ0

ψ−1 ϕ−1

)
, (3.58)

so (ψn, ϕn) = (pn, qn)A, and ψn = ψn(E), respectively ϕn = ϕn(E), is the solution
of Hψ = Eψ with ψ0 and ψ−1 given, respectively solution of Hϕ = Eϕ with ϕ0 and
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ϕ−1 given. Therefore we readily see that

(pn, qn)A

(
a 0
0 b

)
A∗
(
pn
qn

)
= (ψn, ϕn)

(
a 0
0 b

)(
ψn
ϕn

)
≥ 1

2
ψ2
n . (3.59)

On the other hand µn(R) = (en, en) = 1 so 1
2

∫
ψ2
n dµ ≤ 1 and therefore by the

Fubini-Tonelli Theorem for every ε > 0 we have∫
R

∑
n6=0

(ψn(E))2

|n|1+ε
µ( dE) ≤ 2

∑
n 6=0

1

|n|1+ε
< ∞ . (3.60)

We can therefore conclude that µ( dE)-a.s.∑
n6=0

(ψn(E))2

|n|1+ε
< ∞, (3.61)

and the proof is complete. �

We move now toward the characterization of the nature of the spectrum for H
in the disordered case, namely (Vn) and IID sequence of random variable that are
taking values in a bounded interval. Vn is of course defined on a probability space
(Ω,F,P), so also H is a random variable on this space: ω 7→ Hω. It is rather
straightforward to verify the measurability of ω 7→ Hω, from Ω to the space of
bounded linear operators equipped with the operator norm. The result that we are
aiming at is that the spectrum of H is pure point:

Theorem 3.13. If the law of V1 is absolutely continuous with respect to the
Lebesgue measure and if its density is bounded, then Σ(H) = Σp(H), Σa(H) =
Σa(H) = ∅ and the eigenfunctions with eigenvalue E decay exponentially with
rate γ(E) (the Lyapunov function associate to the sequence of random matrices
defined in (3.5)).

So the spectrum of H is made of eigenvalues. Of course the union of all the
eigenvalues are far from being the whole of Σ(H), but they are dense in Σ(H). In
this sense the following result may at first look surprising:

Proposition 3.14. Choose any E ∈ R. Then the probability that E is an
eigenvalue of H is zero.

Proof. We consider the (self-adjoint) projection operator 1{E}(H). The trace
of a projection is the dimension of the target space and if the target space if of
dimension k then E is an eigenvalue of H of multiplicity k. So, by Remark 3.2,
Trace(1{E}(H)) ∈ {0, 1}. Therefore1

1 ≥ E
[
Trace(1{E}(H))

]
= E

∑
n

(
1{E}(H)en, en

)
=
∑
n

E [µn({E})] . (3.62)

1In this step we use that µn({E}) is a random variable. This, i.e. measurability, is not obvious
a priori: a proof can be found for example in [1, Lemma 2.1, pp. 206-207]



3. OPERATOR VIEWPOINT ON LOCALIZATION 61

Translation invariance implies that E [µn({E})] does not depend on n and therefore
E [µn({E})] = 0. Therefore µn,ω({E}) = 0 for every n, P( dω)-a.s.. Therefore
µω({E}) = µ0,ω({E}) + µ−1,ω({E}) = 0 and (by Proposition 3.11), P( dω)-a.s., E is
not an eigenvalue of Hω. �

The next result approaches Theorem 3.13. It say that Σa(H) = ∅. We state it
in an equivalent way: recall the Lebesgue decomposition (3.44) that we now apply
to µ = µω.

Theorem 3.15. µa
ω(R) = 0, P( dω)-a.s..

Actually, the proof says more, because it works with any fixed (i.e., non random)
measure, it does not need to be the Lebesgue measure. More precisely, it says
that given any measure ν on R, P( dω)-a.s. there exists a Borel set B such that
ν(R \ B) = 0 as well as µa

ω(B) = 0. This is intriguing because we can choose
ν = µω0 , highlighting thus the wild dependence of µω on ω.

Proof. Consider the product measure space of Ω equipped with the probability
P and R with the Lebesgue measure. We set Sn(ω,E) = Yn . . . Y1, with Yj defined
in (3.5), and γ(E) is the Lyapunov exponent associated to this sequence: we know
that γ(E) > 0 for every E (see Proposition 3.4). Introduce the measurable subset
of Ω× R

W :=

{
(ω,E) : lim

|n|→∞

1

|n| log ‖Sn(ω,E)‖ = γ(E) and E is not eigenvalue of Hω

}
.

(3.63)
Note that for every E ∈ R the map (random variable) ω 7→ 1W (ω,E) is almost
surely equal to one, that is P({ω : (ω,E) ∈ W}) = 1. This is on one hand because
of Theorem 1.7 (with (3.9) for the n → −∞ case) and, on the other, because of
Proposition 3.14. Therefore for every L > 0 (in reality it sufficed to consider L such
that [−L,L] contains Σ(H)) by the Fubini-Tonelli Theorem

2L =

∫
[−L,L]

P({ω : (ω,E) ∈ W}) dE =

∫
Ω

(∫
[−L,L]

1W (ω,E) dE

)
P( dω) .

(3.64)
But

∫
[−L,L]

1W (ω,E) dE ≤ 2L, hence P( dω)-a.s.
∫

[−L,L]
1W (ω,E) dE = 2L. We

therefore consider for every ω ∈ Ω

AL,ω := {E ∈ [−L,L] : (ω,E) ∈ W} , (3.65)

which, P( dω)-a.s., differs from [−L,L] only of a Lebesgue null set. But for E ∈ AL,ω
we know that if ψ solves Hωψ = Eψ then by Theorem A.3 (Oseledet’s Theorem)
we have that ψ either tends to infinity or to zero, but in both cases exponentially
fast. E is not an eigenvalue and therefore ψ tends to infinity exponentially fast for
n → ∞ or for n → −∞ (or both). Hence, by Proposition 3.12, µω(AL,ω) = 0 (we
recall that µω = µ is the spectral measure µ0 + µ−1 of Hω). Since AL,ω is of full
Lebesgue measure we see that µω is singular with respect to the Lebesgue measure
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on [−L,L] (in the sense, that it concentrates on a Lebesgue set of measure zero).
The proof of Theorem 3.15 is therefore complete. �



APPENDIX A

Birkhoff Ergodic Theorem

Let (X,B, µ) a probability space and let T : X → X be a measure preserving
transformation, i.e. T is measurable and µ(T−1A) = µ(A) for every A ∈ B. One
directly checks that I = {A ∈ B : µ(T−1A∆A) = 1} is a σ-algebra. In particular,
if T is ergodic, then I is trivial.

Theorem A.1 (Birkhoff Ergodic Theorem). For every f : X → R with
f ∈ L1(X,B, µ) there exists a real valued function f̄ , with f̄ ∈ L1(X,B, µ), such
that we have µ( dx)-a.s.

lim
n→∞

f(x) + f(Tx) + . . .+ f(T n−1x)

n
= f̄(x) , (A.1)

and the convergence holds also in L1(X,B, µ). Moreover f̄ is the conditional
expectation of f with respect to I, that is f̄ is measurable with respect to I and∫
A
f dµ =

∫
A
f̄ dµ for every A ∈ I.

Proofs of the Birkhoff Ergodic Theorem may be found for example in [2, Ch. 6,
Th. 6.1, pp. 113-115 ] and [24, Ch. 5, Sec. 3, pp. 409-411]. There only the a.s.
convergence is stated. The L1 convergence can be extracted from the a.s. result
by replacing f with fL = f1[−L,L] ∈ L∞, so if we call Sf,n(x) the normalized sum
in the left-hand side of (A.1), we have that limn SfL,n = f̄L a.s. and in L1 (by
Dominated Convergence). Dominated Convergence also yields limL→∞ ‖f − fL‖1 =
limL

∫
R |f |1|f |>L dµ = 0. Now it suffices to use∥∥Sf,n − f̄∥∥1

≤ ‖Sf,n − SfL,n‖1 +
∥∥SfL,n − f̄L∥∥1

+
∥∥f̄L − f̄∥∥1

, (A.2)

and we have seen that the middle of the three terms in the right-hand side vanishes
as n→∞ for every fixed L. By the measure preserving property and the triangular
inequality we readily see that the first term is bounded by ‖f − fL‖1 ≤ ε for L
sufficiently large. And Jensen inequality applied to the conditional expectation
yields

∥∥f̄L − f̄∥∥1
≤ ‖f − fL‖1 so also this term is bounded by ε for L large. Hence

for every ε > 0 we have lim supn
∥∥Sf,n − f̄∥∥1

≤ 2ε and we are done.

Birkhoff Ergodic Theorem holds also just assuming that
∫
R f+ dµ < ∞: in this

case of course the limit is not necessarily in L1 and one has to give up L1 convergence.
Note that the conditional expectation of f with respect to I is well defined as the
difference of the conditional expectation of f+ (which is in L1) and of the conditional
expectation of f− (which is non-negative).
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Corollary A.2. For every f : X → R with
∫
R f+ dµ < ∞ we have that

µ( dx)-a.s.

lim
n→∞

f(x) + f(Tx) + . . .+ f(T n−1x)

n
= f̄(x) , (A.3)

where f̄ is the conditional expectation of f with respect to I.

Proof. With Eµ[·] for the expectation on (X,B, µ), in particular f̄ = Eµ[f |I],
we introduce for L > 0 the event AL := {x : Eµ[f |I](x) > −L} ∈ I. So for x ∈ AL
we have Eµ[f−|I](x) < L + Eµ[f+|I](x), hence Eµ[f−1AL ] = Eµ[Eµ[f−|I]1AL ] <
L + Eµ[f+]. Therefore g := f1AL ∈ L1 and by Theorem A.1 we have that a.s.
limn Sg,n = E[g|I] = E[f |I]1AL . On the other hand, since AL ∈ I, we readily see
that µ( dx)-a.s.

Sg,n(x) =
f(x) + f(Tx) + . . .+ f(T n−1x)

n
1AL(x) , (A.4)

and therefore, with A∞ := ∪LAL, we have that µ( dx)-a.s.

lim
n→∞

f(x) + f(Tx) + . . .+ f(T n−1x)

n
1A∞(x) = Eµ[f |I](x)1A∞(x) . (A.5)

On the other hand, for x ∈ A{∞ we haveEµ[f |I](x) = −∞ (equivalently, Eµ[f−|I](x) =
∞), so we are left with showing that a.s limn Sf,n1A{

∞
= −∞1A{

∞
or, equivalently,

that limn Sf−,n1A{
∞

= ∞1A{
∞

. By using that A{∞ ∈ I we see that it suffices to
show that a.s. limn Sg,n = ∞1A{

∞
where this time we used g := f−1A{

∞
. But what

Theorem A.1 tells us is that for every L > 0 a.s.

lim inf
n

Sg,n = lim
n
Sg∧L,n = Eµ [g ∧ L |I] = Eµ [f− ∧ L |I] 1A{

∞
. (A.6)

By the Monotone Convergence we pass to the L→∞ limit and the rightmost term
becomes ∞1A{

∞
, so the proof of the corollary is complete. �

The following form of the result known as Oseledets Theorem is stated in [1,
Prop. 1.1, p. 188-189]. It does not involve any probability, just linear algebra. The
proof given here is a mild adaptation of the one in [27].

Theorem A.3. Let Y1, Y2, . . . be two by two real matrices with absolute value
of determinant equal to 1 and such that

(1) limn(1/n) log ‖YnYn−1 . . . Y1‖ = γ > 0;
(2) limn(log ‖Yn‖)/n = 0.

Then there exists a vector V 6= 0 such that

lim
n

1

n
log ‖YnYn−1 . . . Y1V ‖ = −γ , (A.7)
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and for every vector U 6= 0 which is not collinear with V , i.e. U 6= V , we have

lim
n

1

n
log ‖YnYn−1 . . . Y1U‖ = γ . (A.8)

Proof. We set Mn := YnYn−1 . . . Y1. Since ‖Mn‖, which we may assume to be
larger than 1 without loss of generality, is the square root of the larger of the two
eigenvalues of M∗

nMn and since the product of the two eigenvalues is one, we see
that, if we call Un the eigenvector corresponding to the larger eigenvalue and Vn the
other eigenvector (we choose ‖Vn‖ = ‖Un‖ = 1), we have

‖MnUn‖ = ‖Mn‖ and ‖MnVn‖ = 1/‖Mn‖ . (A.9)

Let us stress that Vn and Un are orthogonal. Moreover note that the normalization
does not identify Un and Vn, but rather ±Un and ±Vn. It is about this sign that we
are going to refer to in the rest of the proof when saying by a suitable choice of the
signs.

Recall that, for x, y ∈ R\{0} we use on the projective space the distance d(x, y)
which is the absolute value of the sine of the angle between the two rays. For ease
of notation we write d(x, y) for d(x, y).

The crucial claim is that

lim sup
n

1

n
log d (Vn, Vn+1) ≤ −2γ . (A.10)

In fact, from (A.10) one easily obtains that the convergence limn Vn =: V in the
projective space, or, equivalently, limn Vn = V in R2 with a suitable choice of the
signs. This is because (Vn) is a Cauchy sequence: d (Vn, Vn+1) ≤ exp(−cn) for any
c < 2γ and n sufficiently large. So there exists C > 0 such that d (Vn, Vn+m) ≤
C exp(−cn) for every m ∈ N. This also implies that d (Vn, V ) ≤ C exp(−cn), in
particular

lim sup
n

1

n
log d (Vn, V ) ≤ −2γ . (A.11)

Let us give a proof of (A.10). For this we call θn the angle angle between Vn and
Vn+1. We can write Vn as linear combination of Un+1 and Vn+1:

Vn = cos(θn)Vn+1 + sin(θn)Un+1 . (A.12)

By using the fact that also Mn+1Vn+1 ⊥Mn+1Un+1 we obtain

‖Mn+1Vn‖ ≥ | sin(θn)|‖Mn+1Un+1‖ ≥ | sin(θn)|‖Mn+1‖ , (A.13)

and

‖Mn+1Vn‖ ≤ ‖Yn+1‖‖MnVn‖ = ‖Yn+1‖/‖Mn‖ . (A.14)

Therefore

| sin(θn)| ≤ ‖Yn+1‖
‖Mn‖‖Mn+1‖

, (A.15)

and by exploiting both the assumptions (1) and (2) of Theorem A.3 we see that the
superior limit of (1/n) log | sin(θn)| is not larger than −2γ and (A.10) is proven.
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The next step is showing that V is contracted by Mn at the same exponential
rate as Vn, that is

lim
n

1

n
log ‖MnV ‖ = −γ , (A.16)

which is (A.7). To show this we now redefine θn to be the angle between V and
Vn, so V = cos(θn)Vn + sin(θn)Un (here again, a choice of the signs is made) and

by exploiting once again the orthogonality of MnVn and MnUn and
√
x2

1 + x2
2 ≤

|x1|+ |x2| we see that

‖MnV ‖ ≤ | cos(θn)|‖MnVn‖+ | sin(θn)|‖MnUn‖

=
| cos(θn)|
‖Mn‖

+ | sin(θn)|‖Mn‖

≤ 1

‖Mn‖
+ d(V, Vn)‖Mn‖ ≤ e−(γ−ε)n + e−2(γ−ε)ne(γ+ε)n ,

(A.17)

where we have used | sin(θn)| = d(V, Vn) and the last step, which holds for every
ε > 0 and for n sufficiently large, follows from (A.11) and the hypothesis on the
asymptotic behavior of ‖Mn‖. Therefore (A.16) is established.

We are therefore left with showing (A.8). But for this is sufficient to remark, since
Vn ⊥ Un, also (Un) converges (in the projective space) to V ⊥, at the same exponential
speed (even if we will not use that). Therefore if we write V ⊥ = aVn + bUn, for n
large we have |b| close to one and a close to zero. Therefore for n large |a| is bounded
away from zero and this suffices to conclude that limn(1/n) log ‖MnV

⊥‖ = γ. Since
the vector U that appears in (A.8) can also be written as aV + bV ⊥ with b 6= 0, the
proof is complete. �



APPENDIX B

Regularity of Lyapunov exponents

Let us start with an example (due to H. Furstenberg and Y. Kiefer [15] that
shows that the Lyapunov exponent is, in general, not a continuous function of the
law of the random matrices. Consider in fact the Lyapunov exponent γ(p) of the
product of the random matrices (M1Xj + M2(1 − Xj)), with (Xj) IID Bernoulli
random variables of parametr p and

M1 :=

(
a 0
0 1/a

)
and M2 :=

(
0 b

1/b 0

)
, (B.1)

and a > 1 and b > 0 two constants. This is not a nice random matrix sequence
because it does not satisfy irrreducibility: in fact the union of the x and y axes is
stable under the action of the group generated by M1 and M2. On the other hand,
it is not difficult to compute γ(p) and see that

Lemma B.1. γ(p) = 0 for p ∈ [0, 1).

On the other hand, it is evident that γ(1) = log a > 0. Hence p 7→ γ(p) has a
discontinuity at 1.

Proof. The Markov chain underlying this matrix product is very simple if we
start from the unit vectors of the two axes (and of course we can recover the general
case by superposition, so let us focus on them). If one starts from (1, 0)∗ with
probability p this direction is preserved and the length is multiplied by a. With
probability 1 − p instead we step to (0, 1)∗, and the vector is multiplied by b. The
dynamics is similar from this other state, except that a is replaced by 1/a and b by
1/b. Therefore if introduce the sequence of random times τ1 = inf{n : Xj = 0} then
one easily infers that

Mτ2jMτ2j−1 . . .M1

(
1
0

)
= a

∑j
k=1 Yk

(
1
0

)
, (B.2)

where (Yj) is a sequence of IID random variables and Y1 ∼ G−G′, where G and G′

are two independent Geometric random variables of parameter p, i.e. the probability
that G is n = 0, 1, . . . is pn(1− p). In the same way we see that

Mτ2jMτ2j−1 . . .M1

(
0
1

)
= a−

∑j
k=1 Yk

(
0
1

)
. (B.3)

But
∑j

k=1 Yk/
√
k converges in law toward a Gaussian random variable and one can

apply an iterated logarithm result to get to a sharp estimate. Here we just content
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ourselves with the Law of Large Numbers that tells us that limj

∑j
k=1 Yk/k = 0 a.s.

and in L1 that is telling us that

1

n
log

(
(1, 0)Mτ2jMτ2j−1 . . .M1

(
1
0

))
= 0 , (B.4)

a.s. and in L1. The very same result holds with (1, 0) replaced by (0, 1). Since
the case of cross products clearly yield zero, we readily see that we can also replace
(1, 0) with (1, 1) and this is a norm of the matrix product because we are multiplying
matrices with non-negative entries.

Therefore the proof of Lemma B.1 is complete. �

Here is a general result that shows that some regularity (upper semi-continuity)
does hold under rather minimal conditions. We write γ(µ) for the Lyapunov expo-
nent of (Yn) IID and µ is the law of Y1.

Proposition B.2. For every sequence (µn) of probabilities on G such that,
using Y (n) for a random variable with law µn, we have

(1) (log+ ‖Y (n)‖) is uniformly integrable;

(2) (Y (n)) converges in law toward Y ∼ µ;

then
lim sup
n→∞

γ(µn) ≤ γ(µ) . (B.5)

Continuity holds if we are under the hypotheses of Theorem 1.7:

Proposition B.3. With the same notations of Proposition B.2, if

(1) the probability that det(Y (1)) = 1 is one;
(2) (Y (n)) converges in law toward Y ∼ µ and Y satisfies the assumptions

of Theorem 1.7 (i.e., non compactness and irreducibility);
(3) (log+ ‖Y (n)‖) is uniformly integrable;

then
lim
n→∞

γ(µn) = γ(µ) . (B.6)

Next we state a somewhat general result, which is a very special case of the
general result due to D. Ruelle [23]. We work as usual in R2: we need the notion
of a proper convex cone (we will simply say: cone) which in R2 is simply a subset
{0} ∪ {y ∈ R \ {0} : d(x, y) ≤ 1− δ} for an x 6= 0 and a δ ∈ (0, 1).

Theorem B.4. We consider a sequence ((Yn,Mn)) of IID GL2(R)×M2(R)
random variables. We assume that

(1) log ‖Y1‖ ∈ L1;
(2) there exists two cones C1 and C2, with C2 strictly contained in C1 such

that if x ∈ C1, then P(Y1x ∈ C2) = 1;
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(3) there exists c > 0 such that P(‖M1‖/‖Y1‖ ≤ c) = 1;

then the top Lyapunov exponent γ(δ) associated to (Yn + δMn) is well defined
for every δ ∈ R. Moreover δ 7→ γ(δ) is real analytic for δ in a neighborhood of
0.

Proof. The conditions yield that ‖Y1+δM1‖ ≤ (1+|δ|c)‖Y1‖, hence E[log+ ‖Yn+
δMn‖] <∞. This is sufficient to define γ(δ) (Definition 1.3). For the rest we apply
[7, Theorem 1.3]: note in particular that for δ small we have that E[| log ‖Yn +
δMn‖|] <∞. �

As an application we consider the Lyapunov exponent γ(ε) associated to (Tj) in
(2.27):

Tj =

(
1 ε
εZj Zj

)
, (B.7)

with (Zj) IID and logZ1 ∈ L1. We have that:

Corollary B.5. With the definitions we have just introduced, ε 7→ γ(ε) is
real analytic in ε ∈ (−1, 1) \ {0}.

Proof. For this it suffices to choose an arbitrary ε 6= 0 (without loss of gen-
erality we choose ε > 0). We are going to work with Yj = T ∗j in Theorem B.4
and

Mj =

(
0 Zj
1 0

)
. (B.8)

We are exploiting here the fact that the Lyapunov exponent is the same if we consider
the transpose of the matrices.

Hypothesis (1) is obvious. Let us focus on (2) and (3).
For (2) we choose C1 = {x : x1 ≥ 0 and x2 ≥ 0} ∪ {x : x1 ≤ 0 and x2 ≤ 0},

i.e. the first and third quadrant. The we observed that the action of Y = Yj sends
r := x2/x1 to (ε+ Zr)/(1 + εZr) and for every z, r ∈ (0,∞)

ε ≤ ε

(
1 +

zr(1− ε2)

ε(1 + εzr)

)
=

ε+ zr

1 + εzr
=

1

ε

(
1− 1− ε2

1 + εzr

)
≤ 1

ε
, (B.9)

so the cone C1 is contracted into the cone that is between the line with angle
arctan(ε) with the x axis and the line with angle with angle arctan(1/ε) with the
same axis.

For (3) a straightforward computation yields

‖T‖2 =
1

2

(
(1 + ε2)(1 + Z2) +

√
(1 + ε2)2(1 + Z2)2 − 4Z2(1− ε2)2

)
≥ 1

2
(1 + ε2)(1 + Z2) ,

(B.10)

and ‖M‖ = Z. So ‖M‖/‖T‖ = ‖M‖/‖T ∗‖ ≤ 2. �





APPENDIX C

Some statistical mechanics

We start by working on a finite set Λ and H : {−1, 1}Λ → R. We set for β ≥ 0

µβ(σ) :=
exp (βH(σ))

ZΛ,β

with ZΛ,β :=
∑
σ

exp (βH(σ)) . (C.1)

The free energy density is

fΛ(β) :=
1

|Λ| logZΛ,β . (C.2)

By Jensen inequality for every probability ν on {−1, 1}Λ

logZΛ,β = log
∑
σ

ν(σ)
exp (βH(σ))

ν(σ)
≤ β

∑
σ

ν(σ)H(σ)−
∑
σ

ν(σ) log ν(σ) , (C.3)

from which we obtain the variational formula

fΛ(β) = min
ν

(
β
∑
σ

ν(σ)
H(σ)

|Λ| −
1

|Λ|
∑
σ

ν(σ) log ν(σ)

)
, (C.4)

because equality holds for ν = µβ:

fΛ(β) =

(
β
∑
σ

µβ(σ)
H(σ)

|Λ| −
1

|Λ|
∑
σ

µβ(σ) log µβ(σ)

)
. (C.5)

Let us introduce a formalism to make the partition function more explicit: for
n < m and σl, σr ∈ {−1, 1} we introduce

Zn,m,σl ,σr :=
∑

σ∈{−1,1}{n,...,m+1}

exp

(
J

m∑
j=n+1

σj−1σj +
m∑
j=n

hjσj

)
(C.6)

where σn = σl and σm+1 = σr are the boundary conditions. We identify in what
follows the spin up σ = +1 with the column vector (1, 0)∗ and the spin down σ = −1
with the column vector (0, 1)∗. So

Zn,m,σl ,σr = σ∗lTn+1 . . . Tmσr , (C.7)

with

Tj =

(
eJ+hj e−J+hj

e−J−hj eJ−hj

)
. (C.8)
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Let us apply (C.5) to the one dimensional Ising case with h = 0. In this case
the matrix is (

eJ e−J

e−J eJ

)
= eJ

(
1 + e−2J

)( 1
1+e−2J

e−2J

1+e−2J

e−2J

1+e−2J
1

1+e−2J

)
. (C.9)

With p = e−2J/(1 + e−2J) we see that the entropy contribution gives for renewal
with inter-arrival K(·) and then for K(n) = (1− p)n−1p∑

nK(n) logK(n)∑
n nK(n)

= p log p+ (1− p) log(1− p) = p log p− p+O(p2) . (C.10)

This means that the free energy is for J →∞

J + 2J log

(
e−2J

1 + e−2J

)
− e−2J

1 + e−2J
log

(
e−2J

1 + e−2J

)
+

e−2J

1 + e−2J
+O

(
e−4J

)
= J + e−2J +O

(
e−4J

)
. (C.11)

Now we repeat the computation for a more generic K(·) for which
∑

n nK(n) ∼
CJ2. For the free energy we obtain

J − 2J

CJ2(1 + o(1))
−
∑

nK(n) logK(n)

CJ2(1 + o(1))
, (C.12)

so if K(n) = (1− p)n−1p, then p ∼ 1/(CJ2)
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