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CHAPTER 1

Markov chains: definitions, basic properties and examples

1. Basic concepts

Like always in probability, we work on some probability space (Ω,F ,P) that is,
at the same time, crucial and useless. At a certain point it will be very useful to
make (Ω,F ,P) explicit, and we will make it explicit, but for most of the time it is
just abstract nonsense.

To define a Markov Chain (MC) we need to provide a state space E and a
probability kernel p:

• the state space E is just a set, but it comes with its own σ-algebra E that
tells us which subsets of E are measurable: so (E, E) is a measurable space;
• p is an application from E × E such that

(1) p(x, ·) is a probability on (E, E) for every x ∈ E;
(2) p(·, A) : E → R is a measurable function for every A ∈ E (the measur-

able subsets of R are the Borel subsets of R).

A Markov Chain with state space E and probability kernel p (in short: (E, p)-
MC, when E is obvious we just write p-MC, sometimes we omit p too) is a sequence
(Xn)n=0,1,... of random variables taking values in E with the property that for every
n and every A ∈ E

P
(
Xn+1 ∈ A

∣∣Fn) = p (Xn, A) , (1.1)

where Fn = σ (X0, X1, . . . , Xn) is the σ-algebra generated by X0, X1, . . . , Xn. The
notation Fn ≺ F , where ≺ means simply that Fn ⊂ F , but it reminds us that both
Fn and F are σ-algebras.

Remark 1.1. Since, by the Tower Property of conditional expectation, (1.1)
directly yields

p (Xn, A) = P
(
Xn+1 ∈ A

∣∣Xn

)
, (1.2)

one may be tempted to think that (1.1) is equivalent to

P
(
Xn+1 ∈ A

∣∣Fn) = P
(
Xn+1 ∈ A

∣∣Xn

)
, (1.3)

but there is an hidden information in (1.2): it is saying that the right-hand side
(of (1.2)) depends only on Xn and A. Notably, there is no direct dependence on n
itself ! We call just MC a process that satisfies (1.3) for every n: it is a more general
process because it may be time inhomogeneous (see Exercise 2.3 for examples). We
will consider such a case only occasionally and the fact that we sometimes write MC
for a p-MC should not lead to confusion.
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6 1. MARKOV CHAINS: DEFINITIONS, BASIC PROPERTIES AND EXAMPLES

Remark 1.2. It may sometimes be practical to consider MC with respect to
more general filtrations (Gn). Since we want that (Xn) is adapted (i.e., Xn is Fn-
measurable for every n), we require that Gn � Fn for every n. Then we say that
(Xn) is a (p, (G)n)-MC if (1.1) holds for every n with Fn replaced by Gn. It is
straightforward to check that a (p, (G)n)-MC is a p-MC. Analogous generalization
holds for (inhomogeneous) MC.

We stress also that the equality in (1.1) is meant only almost surely because a
priori the left-hand side is defined only almost surely.

More importantly, note that if we set µ(A) := P(X0 ∈ A), then µ is a probability
on (E, E) and by the Tower Property of conditional expectation

P(X0 ∈ A0, X1 ∈ A1) = E
[
P
(
X1 ∈ A1

∣∣F0

)
1{X0∈A0}

]
=

∫
A0

(∫
A1

p(x0, dx1)

)
µ( dx0) =

∫
A0

∫
A1

µ( dx0)p(x0, dx1),

(1.4)

for every A0 and A1 ∈ E . Of course this generalizes to

P(X0 ∈ A0, X1 ∈ A1, . . . , Xn ∈ An) =∫
A0

∫
A1

. . .

∫
An

µ( dx0)p(x0, dx1)p(x1, dx2) . . . p(xn−1, dxn), (1.5)

for every A0, . . . , An ∈ E .

Proposition 1.3. X is a p-MC with X0 ∼ µ (i.e., the law of X0 is µ) if
and only if (1.5) holds for every n = 0, 1, . . . and for every A0, . . . , An ∈ E.

Proof. Useful exercise. �

Before giving examples of MC’s let us give the following result, which is central
for us.

Proposition 1.4. (ξj)j=1,2,... is an IID sequence of random variables that
take values in a measurable space (E ′, E ′) and h : E × E ′ → E is measurable.
If X0 is independent of (ξj) and if we set recursively Xn+1 = h (Xn, ξn+1), n =
0, 1, . . ., we have that (Xn) is a (E, p)-MC with

p(x,A) := P (h(x, ξ1) ∈ A) , (1.6)

for every x ∈ E and every A ∈ E.

We take this occasion to point out that when dealing with product spaces we use
the product σ-algebra which is the σ-algebra that contains the product topology: in
particular, the σ-algebra that equips E ×E ′ is the smallest σ-algebra that contains
the sets A× A′ with A ∈ E and A′ ∈ E ′.

Essentially without loss of generality we can choose E ′ = R or E ′ = (0, 1), but
sometimes if is practical to deal with more general spaces (and we will see it with
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the first examples). Moreover if we introduce the notation hξ(x) = h(x, ξ) we have
the convenient notation

Xn = hξn ◦ hξn−1 ◦ . . . ◦ hξ1 (X0) , (1.7)

so that Xn is just the result of applying n random functions to the initial condition
X0. And (1.7) is one of the most efficient ways to simulate a Markov chain.

Proof of Proposition 1.4. From (1.7) we see that Xn is measurable with
respect to σ (X0, ξ1, . . . , ξn). This implies both that Fn ≺ σ (X0, ξ1, . . . , ξn) and that
Xn and ξn+1 are independent. And of course ξn+1 is independent of σ (X0, ξ1, . . . , ξn).
Therefore

E
[
1{h(Xn,ξn+1)∈A}

∣∣X0, ξ1, . . . , ξn
]

= p (Xn, A) , (1.8)

where p (x,A) is defined in (1.6). By the Tower Property we conclude the proof:

P
(
Xn+1 ∈ A

∣∣Fn) = E
[
1{h(Xn,ξn+1)∈A}

∣∣Fn]
= E

[
E
[
1{h(Xn,ξn+1)∈A}

∣∣X0, ξ1, . . . , ξn
] ∣∣Fn]

= p (Xn, A) .

(1.9)

�

Exercise 1.5. The process that we have defined iteratively by means of a func-
tion h and the IID sequence (ξn) is called Random Dynamical System. So, Proposi-
tion 1.4 tells us that a Random Dynamical System is a p-MC. The converse is true
in great generality. Namely: under very mild assumptions (on the state space E),
given a p-MC (Xn) there exists a Random Dynamical System that coincides in law
with (Xn). The exercise consists in proving such a statement for E = R.

In order to give the first examples of Markov chains let us consider for the moment
just the class of random walks: this is a very limited context, but it contains already
a lot of examples.

(1) If E = E ′ = Rd and h(x, y) = x+ y then the arising MC is just a random walk
on Rd: for n = 1, 2, . . .

Xn = X0 +
n∑
j=1

ξj , (1.10)

and p(x, ·) coincides with the law of x+ ξ1.
(2) If E = E ′ = Zd and h(x, y) = x+ y then the arising MC is just a random walk

on Zd: note that (1.10) still holds
(3) If E = E ′ = Z, d = 1 and P(ξ1 = +1) = 1 − P(ξ1 = −1) = p then Xn is just a

one dimensional simple random walk (simple refers that it jumps just to nearest
neighbors). If p = 1/2 we speak of simple symmetric random walk.

(4) Random walks are naturally defined for example on a graph (n, l) where n is a
(finite or countably infinite) set and l is a subset of n2. n is the set of nodes (or
sites) and l is the sent of links. We say that the graph is symmetric if (x, y) ∈ l
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implies (y, x) ∈ l. If nx := |{y : (x, y) ∈ l}| < ∞ for every x ∈ n, so we can
write the set {y : (x, y) ∈ l} as {yx,1, yx,2, . . . , yx,nx}, we define for u ∈ (0, 1)

h(x, u) =
nx∑
j=1

yx,j1((j−1)/nx,j/nx](u) . (1.11)

This way if (ξj) is an IID sequence of variables that are uniformly distributed
over (0, 1) (notation: U(0, 1)), then, given X0 ∈ n, Xn+1 = h(Xn, Uj+1) defines
the simple random walk on the graph (n, l), which is a MC with state space
E = n. In particular, if n = Z and l = {(x, y) ∈ Z2 : |x − y| = 1}, then (n, l)
is a symmetric graph and the MC we have just defined is the simple symmetric
random on Z.

When E is finite or countably infinite the σ-algebra that we use is simply the
set of all subsets of E. In this case we set

Q(x, y) := p(x, {y}) , (1.12)

and Q is a stochastic matrix in the sense that

(1) Q(x, y) ≥ 0 for every x, y ∈ E;
(2)

∑
y∈E Q(x, y) = 1 for every x ∈ E.

Of course, knowing Q is equivalent to knowing p.
As an example, the stochastic matrix associated to the random walk on a graph

is Q(x, y) = 1/nx for every y such that (x, y) ∈ l, and Q(x, y) = 0 otherwise.

2. The Markov property

It is practical (for certain proofs) to introduce a canonical space in which to
represent a p -MC with state space E. The canonical space is simply Ω := E{0,1,...},
equipped with the product topology and the corresponding σ-algebra, that we denote
(as usual) by F . F can be characterized as the smallest σ-algebra that contains the
cylindric events, that is the events of the form A1×A2× . . . with Aj ∈ E for every j
and for which there exists j0 such that Aj = E for every j ≥ j0. Note that the class
of cylinder events is stable under intersection. So the class of cylinder events forms
what in measure theory is a π-system and if two probabilities coincide on a π-system,
then they coincide on the whole σ-algebra (i.e., they are the same probability). A
concise and approachable treatment of these issue and, in general, to the measure
theory we need may be found in [9, Ch. 1].

If µ is a probability on (E, E) and if p is a probability kernel, then we can define
a probability on the canonical space by stipulating that

Pµ (A0 × A1 × . . .× Ak × E × E × . . .) =∫
A0×A1×...×Ak−1

µ( dx0)p(x0, dx1) . . . p(xk−1, Ak) . (1.13)

Standard (non trivial, but intuitive) extension theorems from measure theory guar-
antee that there exists a Pµ (on the whole product σ-algebra for which (1.13) holds
for every cylinder set. And such a probability is unique because the cylinder sets
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form a π-system. We call this probability the canonical probability for the MC with
initial condition µ and transition kernel p.

When µ = δx we write Px for Pδx . Moreover, when the initial datum is evident
or not important to be underlined, we simply write P for Pµ. Of course Eµ and Ex
are the corresponding expectations.

Consider now the canonical projections Xj(ω) := ωj, j = 0, 1, . . .. Note that
Xj is a random variable on the canonical probability space (Ω,F ,Pµ) and that it
follows directly from the definitions that (Xj)j=0,1,... is a p -MC with X0 ∼ µ.

We point out however that we use Pµ, Pµ, ext. . . also when the probability space
is not canonical and Pµ is the law of the p-MC (Xn) with X0 ∼ µ.

Let us also introduce the translation operator on the canonical space: for n =
0, 1, . . .

(θnω)j = ωn+j , (1.14)

for j = 0, 1, . . .. For A an event in the canonical space we have, with standard
notation for the pre-image of a set under the action of a function, θ−1k A = {ω :
θkω ∈ A} (and one directly checks that θk is measurable, i.e. θ−1k A ∈ F : in fact,
θ−1k A is cylindrical if A is).

Proposition 2.1 (Markov Property). We work on a generic probability
space (Ω,F ,P) (not necessarily the canonical one). If (Xn) is a Markov chain
and A is an event in the canonical space, then for every k = 0, 1, . . . we have
that P( dω)-a.s.

P
(
(Xn)n=0,1,... ∈ θ−1k A

∣∣Fk) (ω) = PXk(ω) (A) , (1.15)

and we recall that Fk = σ(X0, X1, . . . Xk).

Possibly more intuitively, (1.15) can be rewritten as

P
(
(Xn+k)n=0,1,... ∈ A

∣∣Fk) (ω) = PXk(ω) (A) . (1.16)

Proof. By definition of conditional expectation and by standard results of mea-
sure theory it suffices to check that

P (Xj ∈ Bj for j = 0, . . . , k and Xj ∈ Aj for j = k, . . . , j +m) =

E
[
1{Xj∈Bj for j=0,...,k}PXk(ω) (Xj ∈ Aj for j = 0, . . . ,m)

]
, (1.17)

for every m = 0, 1, . . . and for every choice of events B0, . . . , Bk and A0, . . . , Am in E .
But, by (1.5), both the left- and right-hand side of (1.17) can be written explicitly
as ∫

B0

. . .

∫
Bk−1

∫
Bk∩A0

∫
A1

. . .

∫
Am

µ( dx0)p(x0, dx1) . . . p(xk+m−1, dxk+m) , (1.18)

with µ the law of X0. This is straightforward for the left-hand side. For the right-
hand side one should just remark that (1.5) implies via a standard approximation
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procedure that

E
[
1{X0∈A0,X1∈A1,...,Xk−1∈Ak−1}f(Xk)

]
=∫

A0

∫
A1

. . .

∫
Ak−1

∫
E

µ( dx0)p(x0, dx1)p(x1, dx2) . . . p(xk−1, dxk)f(xk) , (1.19)

for every bounded measurable function f : E → R. �

Remark 2.2. An equivalent way to formulate the Markov property, i.e. Propo-
sition 2.1, is for example to say that for every bounded bounded measurable function
h : E{0,1,...} → R

E
[
h(Xk, Xk+1, . . .)

∣∣Fk] (ω) = EXk(ω) [h(X0, X1, . . .)] . (1.20)

Moreover, if we work on the canonical space and the variables Xj are the canonical
projections, we can state the Markov property by saying that for every positive (or
bounded) random variable Y which is measurable with respect to σ(X0, X1, . . .)

E
[
Y ◦ θk

∣∣Fk] (ω) = EXk(ω) [Y ] , (1.21)

P( dω)-a.s..

We exploit the notations that we have in our hands to remark that p(x,B) =
Px(X1 ∈ B) and also that if we introduce the important notation

pk (x,B) := Px (Xk ∈ B) . (1.22)

Note that pk is a probability kernel. Moreover

p? :=
∞∑
k=1

2−kpk , (1.23)

is also a probability kernel (that will come very handy later on).

Exercise 2.3. Show that if (Xn) is a p-MC, then for every k ∈ {1, 2, . . .} the
process (Xnk)n=0,1,... is a pk-MC. Show moreover that given any sequence of integer
numbers n0, n1, . . ., with n0 ≥ 0 and nj+1 ≥ nj for every j, then (Xnj) is a MC:
in general, this MC is inhomegenousneous. This way we have constructed a large
family of inhomogeneous Markov chains.

3. The Strong Markov property

The notion of stopping time is linked to the filtration that we have chosen for
our space: in our case (Fn) is the natural filtration of the MC we are considering,
but it could be a larger filtration. A stopping time τ (with respect to the filtration
(Fn)) is a random variable that takes values in {0, 1, . . . ,∞} with the property that

{τ ≤ k} ∈ Fk for every k = 0, 1, . . . . (1.24)

Note that, with F∞ the smallest σ-algebra that contains ∪nFn, we have that {τ =
∞} ∈ F∞. Moreover one directly checks that (1.24) is equivalent to asking that
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{τ = k} ∈ Fk for every k = 0, 1, . . . For τ a stopping time, we introduce also the σ-
algebra Fτ that contains what happened up to time τ . The (mathematical) definition
is:

Fτ := {A ∈ F : A ∩ {τ = n} ∈ Fn for n = 0, 1, 2, . . .} . (1.25)

The easy exercise of verifying hat Fτ is a σ-algebra is highly advised. In the direction
of justifying the informal interpretation we have given of Fτ we remark that if τ = n
(that is, if τ is a constant, hence trivially a stopping time), then Fτ = Fn. Moreover
(one more useful exercise!) if τ ′ is another stopping time and if τ ′ ≥ τ , then
Fτ ≺ Fτ ′ . Finally, if (Yn) is adapted to (Fn) and if τ < ∞ a.s. we can introduce
Yτ (ω) := Yτ(ω)(ω) for every ω ∈ {τ < ∞}. If τ(ω) = ∞ and the Y random
variables are real we can (for example) set Yτ (ω) := 0. With this choice we have
Yτ =

∑
n=0,1,... Yn1{n}(τ), where the same over an empty set gives 0. Since for every

Borel set B we have {Yτ ∈ B} ∩ {τ = n} = {Yn ∈ B} ∩ {τ = n} ∈ Fn we see that
{Yτ ∈ B} ∈ Fτ . Therefore Yτ is Fτ measurable and this is possibly the strongest
argument to say that Fτ contains the what happened up to time τ .

Important examples of stopping times include the time of first entry of an
adapted process (Yn) in a mesurable set, keeping in mind that there are two slightly
different natural versions of such a time: the (first) hitting time

T [A(ω) = T Y,[A (ω) := inf {n = 0, 1, . . . : Yn(ω) ∈ A} , (1.26)

and the (first) return time

TA(ω) = T YA (ω) := inf {n = 1, 2, . . . : Yn(ω) ∈ A} , (1.27)

where we adopt the convention that the infimum of the empty set is ∞: of course

T Y,[A ≤ T YA .
Also the successive entries do A are stopping times: successive entries to a mea-

surable set is an important sequence of stopping time for what we are going to do
and will be treated when it will come up.

Theorem 3.1 (Strong Markov Property). X is a p-MC on the canonical
space. For every positive (or bounded) random variable Y , for every choice of
distribution µ of X0 and for every stopping time τ we have

Eµ
[
Y ◦ θτ1{τ<∞}

∣∣Fτ] = EXτ [Y ] 1{τ<∞} , (1.28)

Pµ-a.s..

Proof. It is clear (is it? Do verify it as an exercise) that the right-hand side in
(1.28) is Fτ - measurable. Therefore, by definition of conditional expectation, since
Y is either positive or bounded it suffices to check that for every A ∈ Fτ we have

Eµ
[
Y ◦ θτ1{τ<∞}1A

]
= Eµ

[
EXτ [Y ] 1{τ<∞}1A

]
. (1.29)

Now the point is simply to remark that {τ < ∞} = tn=0,1,...{τ = n} so that
σ-additivity tells us that (1.29) is equivalent to verifying that

Eµ
[
Y ◦ θτ1{τ=n}1A

]
= Eµ

[
EXτ [Y ] 1{τ=n}1A

]
. (1.30)
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for every n. In turn (1.30) is equivalent to

Eµ
[
Y ◦ θn1{τ=n}∩A

]
= Eµ

[
EXn [Y ] 1{τ=n}∩A

]
. (1.31)

Since {τ = n} ∩ A ∈ Fn we can rewrite (1.31) as

Eµ
[
E
[
Y ◦ θn

∣∣Fn]1{τ=n}∩A] = Eµ
[
EXn [Y ] 1{τ=n}∩A

]
, (1.32)

but this equality holds as a direct consequence of the (simple) Markov property
(1.21). �

4. Useful tool: martingales and harmonic functions

A measurable function f that is bounded below and satisfies pf ≤ f is called
superharmonic, or p-superhamonic if we need to be more explicit. If we have only
pf(x) ≤ f(x) for x ∈ A ∈ E we say that f is superharmonic on A. Moreover we say
that a function is harmonic (on A) if pf = f (on A).

Here is a first result that links superharmonic functions to supermartingales.

Proposition 4.1. X is a MC with probability kernel p and f is superhar-
monic. Assume also that E[f(X0)] <∞. Then (f (Xn))n=0,1,... is a supermartin-
gale.

Note that E[f(X0)] <∞ is trivially verified if X0 is not random. Recall also that
a supermartingale bounded below is uniformly bounded in L1 (incidentally, this is
explicitly written in the proof just below).

Proof. Since f is bounded below we set with c := min(inf f, 0) ≤ 0 and consider
the non negative process (Yn), with Yn := f(Xn) − c for every n: recall that the
conditional expectation is well defined for non negative random variables without
integrability conditions. So we remark that (Yn) is adapted to (Fn) and E[Yn+1|Fn] ≤
Yn by superharmonicity: this is the crucial supermartingale property, but we need
also that Yn ∈ L1 for every n. But E[Yn+1|Fn] ≤ Yn yields E[Yn+1] ≤ E[Yn], that is
‖Yn‖1 = E[Yn] ≤ E[Y0] = ‖Yn‖1 = ‖f(X0)− c‖1 ≤ ‖f(X0)‖1 + |c| <∞. �

Proposition 4.2. X is a MC with probability kernel p and assume that
X0 = x is not random. Then f ≥ 0 is superharmonic on A if and only if(
f
(
Xn∧T [

A{

))
n=0,1,...

is a non negative supermartingale for every x ∈ E.

Proof. We set Yn := f
(
Xn∧T [

A{

)
.
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If f is superharmonic on A we have

E
[
Yn+1

∣∣Fn] = E
[
Yn+1

(
1{

T [
A{
≤n

} + 1{
T [
A{
>n

}) ∣∣Fn]
= f

(
XT [

A{

)
1{

T [
A{
≤n

} + E [f(Xn+1)|Fn] 1{
T [
A{
>n

}
= f

(
XT [

A{

)
1{

T [
A{
≤n

} + pf(Xn)1{
T [
A{
>n

}
≤ f

(
XT [

A{

)
1{

T [
A{
≤n

} + f(Xn)1{
T [
A{
>n

} = f
(
Xn∧T [

A{

)
= Yn .

(1.33)

Since f ≥ 0 the bound we just established implies that ‖Yn‖1 ≤ |f(x)| <∞ for every
n. We have therefore established that Y is a supermartingale, for every deterministic
initial condition.

On the other hand, let us assume that Y is non negative and it is a supermartin-
gale for every choice of x0 = x. So Y0 = f(X0) ≥ 0 yields f(x) ≥ 0 for every x.
Moreover for X0 = x ∈ A, which implies T [

A{ ≥ 1, the supermartingale property
directly yields

f(x) ≥ E
[
f
(
X1∧T [

A{

)]
= E [f (X1)] = pf(x) , (1.34)

and, of course, f(x) = f
(
Xn∧T [

A{

)
if x 6∈ A. So the proof is complete. �

Proposition 4.3. Choose a probability kernel p. For every A ∈ E
(1) x 7→ Px

(
T [A <∞

)
is superharmonic and it is harmonic in A{;

(2) x 7→ Px (TA <∞) is superharmonic.

Proof. For (1) we set f(x) = Px
(
T [A <∞

)
and note that pf(x) = Ex[f(X1)] =

Ex[PX1(T
[
A < ∞)]. But the Markov property tells us that P(TA < ∞|F1) =

PX1(T
[
A <∞), because TA = 1 + T [A ◦ θ, so pf(x) = Px(TA <∞). Since T [A ≤ TA we

have that pf(x) ≤ Px(T [A <∞). Moreover if x ∈ A{ then T [A = TA and the proof is
complete.

For (2) we set g(x) = Px(TA < ∞). Like before pg(x) = Ex[PX1(TA < ∞)],
but this time the Markov property yields PX1(TA < ∞) = P(TA ◦ θ < ∞|F1), so
pg(x) = Px(TA ◦ θ < ∞) and {TA ◦ θ <∞} ⊂ {TA <∞}, which completes the
proof. �

5. The potential kernel

Given a p-MC we introduce the total number of visits NA of the chain to a set
A ∈ E :

NA :=
∞∑
k=0

1A(Xk) . (1.35)
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We introduce also the potential kernel U : E × E → {0, 1, . . .} ∪ {∞} by setting

U(x,A) := Ex [NA] =
∞∑
k=0

pk(x,A) . (1.36)

For every x, U(x, ·) is a (positive) measure, because it is a countable sum of measures:
we will soon see that U(x, ·) may be a finite measure, but it may be that U(x,A) =∞
for every A 6= ∅ without this being a pathological case.

In case A = {y} we will use the short-cut notation U(x, y) for U(x, {y}). In the
same way we write Tx for T{x} and T [x for T [{x}.

Proposition 5.1. For every x ∈ E and A ∈ E we have

U(x,A) ≤ Px
(
T [A <∞

)
sup
y∈A

U(y, A) . (1.37)

For A = {y} we have

U(x, y) = Px
(
T [y <∞

)
U(y, y) . (1.38)

Proof. This uses the Strong Markov Property, by noting first that NA =∑∞
n=T [A

1A(Xn) if T [A <∞ and NA = 0 otherwise. We have

U(x,A) = Ex

 ∞∑
n=T [A

1A(Xn)1{T [A<∞}

 =
∞∑
n=0

Ex
[
1A(Xn ◦ θT [A)1{T [A<∞}

]

=
∞∑
n=0

Ex
[
1{T [A<∞}EXT[A

[1A(Xn)]
]

= Ex
[
1{T [A<∞}EXT[A

[NA]
]

≤ Px
(
T [A <∞

)
sup
y∈A

U(y, A) . (1.39)

�

For the next result we introduce the successive visits to A: we set T
(1)
A := TA

and, by recurrence, we set

T
(n+1)
A := inf

{
k > T

(n)
A : Xk ∈ A

}
, (1.40)

and by this we mean that T
(n+1)
A (ω) = ∞ if T

(n)
A (ω) = ∞. T

(n)
A is a stopping time.

Moreover one readily checks that on the event {T (n)
A <∞} we have

T
(n+1)
A = T

(n)
A + TA ◦ θT (n)

A
. (1.41)

We also use the concept of stochastic domination: given two real valued variables
X and Y , X (stochastically) dominates Y if P(X > x) ≥ P(Y > x) for every x ∈ R.

Proposition 5.2. p is a probability kernel and A ∈ E.
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(1) Assume there exists δ ∈ [0, 1) such that supx∈A Px (TA <∞) ≤ δ. Then

supx∈A Px
(
T

(k)
A <∞

)
≤ δk for every k = 1, 2, . . . and, for every X0 ∈

A, NA is stochastically dominated by a geometric random variable of
parameter 1− p. In particular supx∈A U(x,A) ≤ 1/(1− δ).

(2) If instead Px (TA <∞) = 1 for every x ∈ A, then Px
(
T

(k)
A <∞

)
= 1

for every x ∈ A and every k. In this case we also have Px (NA =∞) = 1
for every x ∈ A.

Proposition 5.2 becomes more elegant (and really a dichotomy!) if A contains
just one element:

Proposition 5.3. p is a probability kernel. For every x ∈ E:

(1) If Px (Tx <∞) =: δ ∈ [0, 1) then Px
(
T

(k)
x <∞

)
= δk for every k =

1, 2, . . ., hence, with X0 = x, NA is a geometric random variable (time of
first success) of parameter 1−p. In particular U(x, x) = 1/(1−δ) <∞.

(2) If instead Px (Tx <∞) = 1 then Px
(
T

(k)
A <∞

)
= 1 for every k and

Px (Nx =∞) = 1 and U(x, x) =∞.

We give a proof of Proposition 5.2 and leave the details of Proposition 5.3 as an
exercise.

Proof of Proposition 5.2. We have

Px
(
T

(k+1)
A <∞

)
= Px

(
T

(k)
A <∞, T (k+1)

A <∞
)

= Px
(
T

(k)
A <∞, TA ◦ θT (k)

A
<∞

)
,

(1.42)
so by the Strong Markov Property

Px
(
T

(k+1)
A <∞

)
= Ex

[
1{T (k)

A <∞}PXT (k)
A

(TA <∞)

]
, (1.43)

so in case (1) we readily obtain

Px
(
T

(k+1)
A <∞

)
≤ δ Px

(
T

(k)
A <∞

)
, (1.44)

which yields Px
(
T

(k)
x <∞

)
= δk for every x. For what concerns NA we remark that,

for X0 = x ∈ A, NA = 1+
∑∞

k=1 1{T (k)
A <∞}. So Px(NA > 0) = 1 and, for k = 1, 2, . . .,

Px(NA > k) = Px(T (k)
A < ∞) ≤ δk and this establishes the claimed stochastic

domination. Since U(x,A) =
∫∞
0

Px(NA > x) dx = 1 +
∑∞

k=1 Px(T
(k)
A < ∞), the

bound on supx∈A U(x,A) follows.
For what concerns (2) we go back to (1.43) and we readily see that in this case

Px
(
T

(k)
A <∞

)
= 1 for every k. Therefore Px

(
∩k
{
T

(k)
A <∞

})
= 1 too, therefore

Px(NA =∞) = 1. �
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We now introduce the important notation

ρx,y := Px(Ty <∞) . (1.45)

So we have seen (Proposition 5.3) that ρx,x = 1 if and only if Px(Nx = ∞) = 1.
And if ρx,x < 1 then the chain that starts from x visits a.s. x only a finite number
of times.

It is therefore natural to call recurrent a state x with ρx,x = 1 and transient if
ρx,x < 1 and we will use this language.

Note that ρ(x, y) > 0 is equivalent to the existence of a value of k such that
pk(x, {y}) > 0 (and it is also equivalent to p?(x, {y}) > 0, p? given in (1.23)). We
will say that y is accessible from x if ρx,y > 0. We will also say that y is accessible
if it accessible from every state x ∈ E.

The next result is of particular interest in the case in which E is countable.

Proposition 5.4. If ρx,x = 1 and ρx,y > 0 then ρy,y = ρx,y = ρy,x = 1.

Proof. By Proposition 5.3 we know that ρx,x = 1 is equivalent to Px(Nx =
∞) = 1 (and U(x, x) =∞). So by the Strong Markov Property

0 = Px (Nx <∞) ≥ Px
(
Ty <∞, Tx ◦ θTy =∞

)
= Px (Ty <∞)Py (Tx =∞) ,

(1.46)
that is ρx,yPy (Tx =∞) = 0. But ρx,y > 0 by hypothesis, so Py (Tx =∞) = 0, i.e.
ρy,x = Py (Tx <∞) = 1. Since both ρy,x > 0 and ρx,y > 0 we know that there exist
nx,y and ny,x such that pnx,y(x, {y}) > 0 and pny,x(y, {x}) > 0. So for every n

pny,x+n+nx,y(y, {y}) ≥ pny,x(y, {x})pn(x, {x})pnx,y(x, {y}) , (1.47)

and therefore

U(y, y) ≥
∞∑
n=0

pny,x(y, {x})pn(x, {x})pnx,y(y, {x})

= pny,x(y, {x})U(x, x)pnx,y(y, {x}) = ∞ .

(1.48)

Therefore, by Proposition 5.3, ρy,y = 1. So we have proven that ρy,x = ρy,y = 1. By
exchanging x and y this implies also that ρx,y = 1 and the proof is complete. �

Remark 5.5. In what follows the concept of accessibility is playing an important
role, but up to now we just spoke of accessibility of a state. More generally, we
say that A ∈ E is accessible from x if Px(TA < ∞) > 0. This of course means
that the exists k such that pk(x,A) > 0. Specializing to A = {y}, we recover
that y is accessible from x if and only if ρx,y > 0. We stress that this does not
mean that y is certainly visited starting from x. But if x is recurrent, i.e. ρx,x =
1, then Proposition 5.4 tells us that, if y is accessible from x, y is visited with
probability one (and y is recurrent too). Note also that for many natural MC no state
is accessible from any other point: consider for example a random walk X, on R,
Xn+1 = Xn+ξn+1, {ξj} IID N (0, 1) random variables. Then p(x, dy) = g(y−x) dy,
with g the density of a variable N (0, 1). Hence ρx,y = 0 for every x, y. On the
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other hand p(x,A) > 0 for every A of positive Lebesgue measure. So every positive
Lebesgue measure set is accessible from any state x.

We now give a result that is going to be useful later on. It is rather intuitive,
but the proof is not straightforward and provides a nice example of interplay of MC
and martingales.

Proposition 5.6. Consider a p-MC and A,B ∈ E such that infx∈A Px(TB <
∞) > 0. Then, for every probability µ on (E, E), we have that Pµ(NA =
∞, NB <∞) = 0.

Put otherwise, Proposition 5.6 says that ifNA(ω) =∞ Pµ( dω)-a.s., thenNB(ω) =
∞ Pµ( dω)-a.s..

Proof. Let us set δ := infx∈A Px(TB < ∞) and δ > 0 by hypothesis. A direct
consequence of the definition of δ and NA is that {NA = ∞} ⊂ {

∑
n PXn(TB <

∞) =∞}. We claim that

lim
n→∞

PXn(ω)(TB <∞)
Pµ( dω)-a.s.

= 1{NB(ω)=∞} . (1.49)

This suffices to conclude because if ω ∈ {
∑

n PXn(TB <∞) =∞} then we have that
lim infn→∞ PXn(ω)(TB <∞) ≥ δ, hence, by (1.49), limn→∞ PXn(ω)(TB <∞) = 1 and
NB(ω) =∞ (both facts Pµ( dω)-a.s.). We have therefore established that, if (1.49)
holds, then NA(ω) =∞ implies NB(ω) =∞ Pµ( dω)-a.s..

So the proof of Proposition 5.6 boils down to showing (1.49). In order to establish
this we use that x 7→ Px(TB <∞) is superharmonic (see Proposition 4.3(2)). It is of
course also a (bounded) non negative function, so, by Proposition 4.1, {PXn(TB <
∞)}n=0,1,... is a non negative supermartingale. Therefore [9, Ch. 11] limn PXn(TB <
∞) exists a.s. and in L1. Therefore for every non negative integer m and every
event F ∈ Fm we have

Eµ
[
1F lim

n
PXn(TB <∞)

]
= lim

n
Eµ [1FPXn(TB <∞)]

= lim
n

Eµ
[
1FPµ

(
TB ◦ θn <∞

∣∣Fn)]
= lim

n
Pµ (F ∩ {TB ◦ θn <∞}) .

(1.50)

Now remark that

{TB ◦ θn <∞} =
⋃
j>n

{Xj ∈ B}
n→∞
↘ {NB =∞}. (1.51)

Therefore, by the Lebesgue Dominated Convergence Theorem, (1.50) and (1.51)
yield

Eµ
[
1F lim

n
PXn(TB <∞)

]
= Pµ (F ∩ {NB =∞}) , (1.52)

for every F ∈ Fm. Since this holds for every m, (1.52) holds for every F ∈ ∪mFm
and therefore for every F ∈ F∞. Therefore (1.49) is proven and the proof of Propo-
sition 5.6 is complete. �
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6. Invariant measures

Given a probability kernel p we say that a non zero σ-finite (positive) measure
µ on (E, E) is p-invariant if µp = µ, that is if

∫
E
µ( dx)p(x,A) = µ(A) for every

A ∈ E . We recall that µ is σ-finite if there exists a sequence of events (Aj) with
µ(Aj) <∞ for every j and E = ∪jAj. For example, the Lebesgue measure on R is
σ-finite because the Lebesgue measure of (−n, n) is 2n <∞.

If µ(E) < ∞ we can normalize µ, that is we can redefine µ as µ/µ(E), so µ
becomes a probability. If there exists a p-stationary probability µ we can consider
the stationary p-MC X by choosing the law of X0 to be µ: in this case the law of
Xn does not depend on n (and this is the very concept of stationary process).

Note that when a MC has an invariant probability, the question of uniqueness is
well posed (and important). On the other hand, if a MC has an invariant measure µ
which is not normalizable, then, for every c > 0, cµ is an invariant measure too. And
there is no canonical way of choosing c. So the question of uniqueness in this case
makes sense only up to a multiplicative constant. In order to avoid repetitions given
p we will say that µ is the essentially unique p-invariant measure if µ′ p-invariant
implies that there exists c > 0 such that µ′ = cµ.

It is interesting to remark that if µ is a p-invariant measure, then it is also pk-
invariant (this is trivial). On the other hand (less trivial), if µ is a pk-invariant
measure for a k > 1, then there exists a p-invariant measure. In fact if we set

µ′ =
∑k−1

j=0 µpj/k, then µ′p =
∑k

j=1 µpj/k =
∑k−1

j=0 µpj/k = µ′.

We will not go much into the structure of the space of invariant probability
measures. We just make the remark that convex superpositions of p-invariant prob-
abilities are still p-invariant probabilities. By this we mean that if µ and µ′ are two
p-invariant probabilities, qµ+ (1− q)µ′ is a p-invariant probability for q ∈ [0, 1].

We say that µ is p-reversible if µ is σ-finite and if the measure µ( dx)p(x, dy) on
(E × E, E ⊗ E) is symmetric. More explicitly:∫

E×E
h(x, y)µ( dx)p(x, dy) =

∫
E×E

h(y, x)µ( dx)p(x, dy) , (1.53)

for every bounded and measurable h : E × E → R.

Proposition 6.1. µ is p-reversible. Then

(1) µ is p-invariant;
(2) if in addition µ is a probability, then if X is a p-MC with X0 of law µ

we have that for every n the law of (X0, X1, . . . , Xn) coincides with the
law of (Xn, Xn−1, . . . , X0).

Proof. For what concerns (1) we write for every A ∈ E

µp(A) =

∫
E×E

1E(x)1A(y)µ( dx)p(x, dy) =

∫
E×E

1A(x)1E(y)µ( dx)p(x, dy) ,

(1.54)
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where the second equality is due to reversibility. Now we use that
∫
E
p(x, dy) = 1

for every x so, by Fubini-Tonelli Theorem, we obtain µp(A) = µ(A).

For (2) we remark that

Pµ (X0 ∈ A0, X1 ∈ A1) =

∫
E×E

1A0(x0)1A1(x1)µ( dx0)p(x0, dx1)

=

∫
E×E

1A1(x0)1A0(x1)µ( dx0)p(x0, dx1)

=

∫
E×E

1A1(x1)1A0(x0)µ( dx1)p(x1, dx0)

= Pµ (X0 ∈ A1, X1 ∈ A0) ,

(1.55)

where in the second step we used reversibility and the third step is just a change of
variables. This verifies the claim for n = 2. We leave to the reader the details for
the case of n > 2. �

7. The special case of Markov chains on countable state spaces

When E is countable we choose E = P(E) (the set of all subsets of E) and we
recall the notation Q(x, y) := p(x, {y}), see (1.12).

In this case it is natural to introduce an equivalence relation between states:
x ∼ y (x and y communicate) if Px(T [y < ∞) and Py(T [x < ∞). Note that x ∼ y if
and only if ρx,y > 0 and ρy,x > 0 for x 6= y and x ∼ x for every x: requiring that
x communicates with itself is useless when there exists y 6= x such that x ∼ y, but
it is not superfluous when x does not communicate with any other state. Moreover
we recall that ρx,y > 0 is equivalent to the existence of k such that Qk(x, y) > 0,
which in turn is equivalent to the existence of x =: x0, x1, x2, . . . , xk := y such that
Q(xj−1, xj) > 0 for j = 1, 2, . . . , k.

The kernel p, or the associated MC, is said irreducible if the only equivalence
class is E, that is if all states communicate.

The ∼-equivalence classes partition E into sets that may be closed or open: an
equivalence class A is closed if Q(x, y) = 0 for x ∈ A and y 6∈ A. Otherwise A is
said to be open. By Proposition 5.3 we readily see that either ρx,x = 1 or ρx,x < 1
for every x in a given class: we therefore generalize the terminology introduced for
states right after (1.45) by saying that an equivalence class is recurrent if it contains
recurrent state (and hence all states in the class are recurrent), and we say that the
class is transient otherwise. So an open class is transient, but note that a closed
class needs not to be recurrent: the simple random walk on Z is irreducible if the
probability of jumping to the right is not 0 or 1 and, as we will soon recall in more
detail, it is recurrent if and only if it is symmetric. Hence the asymmetric simple
random walk is transient, but Z is (trivially) a closed class.

And, always by Proposition 5.3, if the class is open then x belongs to an open
class (and therefore we say that the class is transient). In fact, Proposition 5.3 is
also telling us that if x and y belong to the same class, then either ρx,x = ρy,y = 1 or
both ρx,x < 1 and ρy,y < 1: as we will now see with examples, a closed class needs
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not to be (made of) recurrent (states). In order to make this more concrete let us
develop an elementary exercise.

Exercise 7.1. Le us consider a MC on E = {1, 2, 3, 4} with

Q =


1/2 0 0 1/2
0 1/4 1/2 1/4
0 1/4 3/4 0

1/2 0 0 1/2

 . (1.56)

Identify the ∼-equivalence classes and determine whether they are transient or re-
current. Find all the invariant measures for this MC.

Solution. It is often useful to represent graphically the stochastic matrix Q:
and the arrows show the allowed one step transitions. Hence there are two equiv-

1 2 3 4

1

alence classes, {1, 4} and {2, 3}. The state 2 leaks towards state 4, hence {2, 3} is
open (hence transient). The class {1, 4} instead is closed (hence recurrent. This
class structures becomes more apparent at the matrix level if we exchange the label
between the states 2 and 4. With this new numbering the stochastic matrix becomes

1/2 1/2 0 0
1/2 1/2 0 0
0 0 3/4 1/4
0 1/4 1/2 1/4

 , (1.57)

which is made of the two 2× 2 matrices

R :=

(
1/2 1/2
1/2 1/2

)
and T :=

(
3/4 1/4
1/2 1/4

)
, (1.58)

on the diagonal. Note that R is stochastic, but T is only substochastic, in the sense
that T2,1 + T2,2 < 1. This is the mark of the open character of the class {2, 3} in
the original numbering. It is straightforward to find all the invariant measures that
(in the original numbering) are simply (c, 0, 0, c), c > 0. Hence the only invariant
measure can be normalized to be a probability: (1/2, 0, 0, 1/2). This is of course a
direct linear algebra exercise, but (as we detail just below) an invariant probability
gives probability zero to transient states. On the other hand, when E is finite any
measure can be normalized. Moreover the chain restricted to the states {1, 4} is
irreducible, hence there is only one invariant measure for this chain. These consid-
erations, plus the symmetry between the states 1 and 4 allow to find all the invariant
measures with no computations. �
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We remark that if µ is a p-invariant probability, then µ(x) = µ({x}) = 0 for every
x in a transient class. This is simply because Eµ[Nx] =

∑∞
n=0 µ(x) which is equal to

∞ if µ(x) > 0 for one state x in the class: in fact µ(y) =
∑

x µ(x)Qk(x, y) for every k
and if y is in the same class of x there exists k such that Qk(x, y) > 0, hence µ(x) >
0 implies µ(y) > 0. But this is impossible because Eµ[Nx] =

∑
y µ(y)Ey[Nx] =

µ(x)Ex[Nx]+
∑

y 6=x µ(y)ρy,xEx[Nx] ≤ Ex[Nx]
∑

y µ(y), so U(x, x) = Ex[Nx] =∞, i.e.
x is recurrent. We insist that this is true only for invariant probabilities: invariant
measures supported by transient classes may exist. Let us stress also that in the
argument we just completed we have shown that if µ is an invariant measure (not
necessarily a probability) then, given any ∼-equivalence class A, either µ(x) > 0 for
every x ∈ A or µ(x) = 0 for every x ∈ A

Finally, we say that a p-MC is p-irreducible if E is the only equivalence class (i.e.,
if all sites communicate). In this case all states are either recurrent or transient. In
this case we simply say that the MC is recurrent, respectively transient, if there exists
x ∈ E which is recurrent (respectively, transient). We will show in Theorem 2.1
that a recurrent MC admits an invariant measure that is essentially unique: if this
invariant measure is normalizable (hence, if it can be chosen to be a probability),
then the invariant probability is unique. A consequence of Theorem 2.1(iv) is that an
irreducible MC that admits an invariant probability is recurrent: but the existence
of an invariant probability is not necessary for recurrence, so an irreducible recurrent
MC that has an invariant probability (hence a unique invariant probability) is said
positive recurrent. On the other hand, an irreducible recurrent MC that admits no
invariant probability is said null recurrent. This terminology is extended to recurrent
classes. Of course, if |E| <∞, recurrence implies positive recurrence.

We will see in Propositon 2.2 that an irreducible MC that admits an invariant
probability is recurrent, hence positive recurrent.

7.1. Birth and death chain. E = N ∪ {0} and Q is defined by

Q(j, j + 1) = pj , Q(j, j − 1) = qj , Q(j, j) = rj, (1.59)

with pj + qj + rj = 1 for every j. We assume that pj > 0 for every j ∈ E, qj > 0 for
every j ∈ E \ {0} and q0 = 0.

2

0 1 2 3r0 r1 r2 r3

p0 p1 p2 p3

q4q1 q2 q3

It is straightforward to argue that this MC is irreducible: from every state the
chain moves to both nearest-neighbors with positive probability (the graphical rep-
resentation may help).
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We introduce the function ϕ : E 7→ [0,∞) defined by ϕ(0) = 0, ϕ(1) = 1 and by
imposing that

(Qϕ)(k) = ϕ(k) for k = 1, 2, . . . . (1.60)

This yields (ϕ(k+ 1)−ϕ(k)) = (qk/pk)(ϕ(k)−ϕ(k− 1)) for k ≥ 1 and therefore for
n ≥ 2

ϕ(n) = 1 +
n−1∑
m=1

m∏
j=1

qj
pj
. (1.61)

Note that ϕ is increasing, so limn→∞ ϕ(n) =: ϕ(∞) exists and takes value in (1,∞].
Just for this example we write τa for T [a, that is τa := inf{n = 0, 1, . . . : Xn = a}.
Remark that, by (1.60), ϕ is Q-harmonic on N (not on the whole of E because
Qϕ(0) = p0 > 0 = ϕ(0)) so (ϕ(Xn∧τ0)) is a martingale. Remark also that, for
every L ≥ x, we have Ex(τL) < ∞: this follows from a standard estimates because
infx<L Px(τL ≤ L) > 0 (see for example [9, Ch. 10, Sec. 11]). Therefore by the
Optional Stopping Theorem [9, Ch. 10, Sec. 10] we have that, for a ≤ x ≤ b,
ϕ(x) = Ex[ϕ(Xτa∧τb ] from which we readily extract

Px(τb > τa) =
ϕ(b)− ϕ(x)

ϕ(b)− ϕ(a)
=⇒ Px(τb > τ0) = 1− ϕ(x)

ϕ(b)
. (1.62)

The event {τb > τ0} becomes larger when b grows, so

lim
b→∞

Px(τb > τ0) = Px (∪b≥x{τb > τ0}) = 1− ϕ(x)

ϕ(∞)
. (1.63)

It is rather intuitive that this formula is saying that the MC is recurrent if ϕ(∞) =∞
(and it is recurrent if ϕ(∞) <∞. Below we give details for this, but it is better to
get convinced about it (and try to prove it independently of what is written below).

If 0 is recurrent (hence any other x is) we have in particular ρx,0 = Px(τ0 <∞) =
1 for every x. Let us choose a value of x 6= 0 and note that for b > x we have that
τb ≥ b− x under Px, so Px(τb > τ0) ≥ Px(b− x > τ0) and limb→∞ Px(b− x > τ0) = 0
because Px(τ0 < ∞) = 1. Therefore limb→∞ Px(τb > τ0) = 1 so, by (1.63), ϕ(∞) =
∞.

On the other hand, if 0 is transient, i.e. U(0, 0) < ∞, we have U(x, 0) < ∞
which implies ρx,0 < 1 (otherwise from x the chain goes a.s. to 0 and a.s. to x
again because it makes just steps of length one and it cannot stay on a bounded
set for an infinite time (see the estimate just before applying the Optional Stopping
Theorem), and we can repeat the argument indefinitely. Remark now that Px(τb <
τ0) ≥ Px(τb < τ0, τ0 =∞) = 1− ρx,0 for b ≥ x, because 1− ρx,0 = Px(τ0 =∞) and
we have used again that this MC cannot stay in a bounded set for an infinite time
and that it jumps to nearest neighbors. Therefore limb→∞ Px(τb < τ0) ≥ 1−ρx,0 > 0
and, by (1.63), ϕ(∞) <∞.

We have therefore proven that the birth and death MC is recurrent if and only
if ϕ(∞) =∞.

Let us try to identify the invariant measures of this chain. This is an interesting
exercise because it shows that finding the invariant measures can be a daunting task.
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In fact µQ = µ amounts to finding positive solutions µ of

µ(j − 1)pj−1 + µ(j + 1)qj+1 = µ(j)(1− rj) for every j = 1, 2, . . . , (1.64)

and µ(0)p0 = µ(1)q1: recall that r0 = 1 − p0. After some elementary (but not a
priori obvious) steps we see that this is equivalent to finding positive solutions µ of

qjµ(j − 1)

(
pj−1
qj
− µ(j)

µ(j − 1)

)
+ pjµ(j + 1)

(
qj+1

pj
− µ(j)

µ(j + 1)

)
= 0 for every j .

(1.65)
At this stage we realize that one family of solutions is

µ(j) = µ(0)

j∏
k=1

(pk−1/qk) , for j = 1, 2, . . . , (1.66)

because with this choice both termes between parentheses in (1.65) are zero, and
µ(0)p0 = µ(1)q1 holds too.

But did we find all the solutions? We solved the easier problem of finding the
reversible measures! In fact reversibility is equivalent to requiring µ(j − 1)Q(j −
1, j) = µ(j)Q(j, j − 1), i.e. µ(j − 1)pj−1 = µ(j)qj that readily leads to (1.66). But
the answer is yes: we did find all the invariant measures, because µ(1) = µ(0)p0/q1
is the requirement for invariance (that explicitly coincides with reversibility for these
two sites) and (1.64) says that µ(j + 1) is a function of µ(j) and µ(j − 1). So there
is only one family of solutions indexed by µ(0), and we found it.

So we have obtained the following rather complete result:

Proposition 7.2. The invariant measures of the birth and death MC are
given by (1.66), so the invariant measure exists and it is essentially unique. The
chain is recurrent if and only if ϕ(∞) = ∞. Moreover the birth and death MC
is positive recurrent if and only if

∑
x

∏x
k=1(pk−1/qk) < ∞ (and the invariant

probability is unique).

Note that we did find an (essentially unique) invariant measure also when the
chain is transient. We will see that neither existence nor uniqueness is granted when
a MC is transient. We will instead see (Theorem 2.1) that it does not come as a
surprise that when the chain is recurrent there exists an essentially unique invariant
measure.

Proposition 7.2 implies in particular that the symmetric simple random walk is
null recurrent, as well as the well known fact that an asymmetric simple random
walk is transient. In fact the symmetric simple random walk (E = Z and Q(j, j +
1) = Q(j, j − 1) = 1/2 for every j) is equivalent to the birth and death MC with
qj = pj = 1/2 for j = 1, 2 . . . and p0 = 1. To be precise the birth and death
chain is the absolute value of the symmetric simple random walk. So ϕ(∞) = ∞
(recurrence!), but the invariant measure µ in (1.66) is explicitly given by µ(j) = 2
for j = 1, 2, . . . and µ(0) = 1, hence µ(E) =∞ and the MC is null recurrent.
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7.1.1. A pathologic, but interesting, birth and death chain. Let us briefly consider
the case in which all the conditions of the birth and death MC are satisfied, except
for p0 > 0.

Assume p0 = 0, hence r0 = 1. In this case we loose irreducibility, in fact 0 traps
the MC. So E0 := {0} represents a class on its own (of course a recurrent class):
note that E0 is accessible (from any state in the system). E1 := N is another class
and it is clearly open. So, one way or the other, E1 is transient. We say one way or
the other because E1 can be transient in different ways, in the sense that the MC
could escape to infinity with positive probability, or it could fall into the trap E0

with probability one.
In order to look at these different scenarios we consider the simplified set up of

pj = p and qj = q for j = 1, 2, . . . and p0 = 1 − r0 = 0. If p > 1/2 the process
is a random walk with increment with increment expectation 2p − 1 > 0, excepts
when it hits 0 (and it is trapped). The law of large numbers suffices to conclude
that Px(τ0 = ∞) > 0 for every x > 0. But we can make this estimate quantitative
exploiting the function ϕ in (1.61) which in this case becomes

ϕ(n) =
1− (q/p)n

1− (q/p)
, (1.67)

so that Px(τ0 < ∞) = limb→∞ Px(τb > τ0) = 1 − ϕ(x)/ϕ(∞) = (q/p)x. So the MC
that starts from x is eventually trapped in 0 with probability (q/p)x and walks off
to +∞ with probability 1− (q/p)x.

If q ≥ p instead one can argue (we leave the details to the reader) that the MC
is eventually trapped in 0 with probability 1.

Let us look at the invariant measure: it is clear that µ(x) = δ0(x) (Kronecker
delta) is an invariant probability for every choice of p. But more than that is true:
µQ(0) = µ(0) means µ(0) + µ(1)q = µ(0), that is µ(1) = 0. Then µQ(1) = µ(1)
means µ(2) = µ(1)/q = 0. And µQ(j) = µ(j) for j ≥ 2 yields (µ(j + 1)− µ(j))q =
(µ(j) − µ(j − 1))p, so µ(j + 1) − µ(j) = 0 for every j ≥ 2. This means that
µ(x) = δ0(x) is the unique invariant measure (up to a multiplicative factor) and it
is the unique invariant probability.

We will see that such a statement follows from the general theory (Theorem 2.1)
because 0 is recurrent and it is accessible. While this model of non irreducible birth
and death chain is artificial, it illustrates well a phenomenon that is not artificial at
all (see Sec. 7.3).

7.2. The simple random walk on Z. Here we are again with the simple
random walk on E = Z, that is Xn+1 = Xn + ξn+1, P(ξ = 1) = 1− P(ξ = −1) = p.
This MC is of course irreducible. The quickest way to see that it is transient for
p 6= 1/2 is to use the law of large numbers: limnXn/n = 2p−1 a.s., so every state is
visited at most a finite number of times. On the other hand there are several ways
to see that if p = 1/2 the simple random walk (in this case, symmetric) is recurrent:
an elementary (but computationally possibly a bit demanding) way to see it is to
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use the binomial formula for

Q2n(x, x) =

(
2n
n

)
n→∞∼ 1

π
√
n
, (1.68)

where the asymptotic equivalence follows from the Stirling asymptotic formula n! ∼√
2πn(n/e)n. For completeness we signal the obvious fact that Q2n+1(x, x) = 0,

which is in any case irrelevant for concluding that U(x, x) =
∑

nQ
2n(0, 0) =∞.

Let us find the invariant measures: µQ = µ spells out

µ(j − 1)p+ µ(j + 1)(1− p) = µ(j) for every j ∈ Z . (1.69)

This means that .
If p = 1/2 it is convenient to observe that (µ(j + 1)− µ(j))/(µ(j)− µ(j − 1)) =

p/(1 − p) = 1, i.e. the increments of µ are constant. So µ(j) = µ(0) + jc for every
choice of c. But the only choice that yields µ(j) ≥ 0 for every j is c = 0. So the
only invariant measure is the uniform measure on Z: µ(j) = µ(0) > 0 for every j.

On the other hand, if p 6= 1/2 it is (possibly) better to exploit directly (1.69)
and look for solutions of the form µ(n) = cn. One readily sees that c = p/(1 − p)
or c = 1. Since given (say)µ(0) and µ(1) one determines µ, we obtain that all the
solutions are µ(x) = C0 +C1(p/(1− p))x, which is a positive measure if C0 ≥ 0 and
C1 ≥ 0 and it is non null if C0 ∧ C1 > 0. So we see that we have a two dimensional
family of measures: the invariant measure is a linear combination of the uniform
measure and a measure that grows exponentially at +∞ or at −∞, according to
whether p > 1/2 or p < 1/2. Therefore when the simple random walk is transient,
essential uniqueness of the invariant measure is lost.

One should not draw quick conclusions from this example: in this case we have
seen that we loose uniqueness of the invariant measure if the MC is transient, but in
Section 7.1 we have already found a transient chain with unique invariant measure
and in Section 7.3 and Section 7.4 we will present examples of transient MC’s with
no invariant measures.

As already anticipated, we will see (Proposition 2.2) that what we can exclude
for a transient MC is the existence of an invariant probability: if an irreducible MC
admits an invariant probability, the MC is (positive) recurrent.

7.3. Branching process (Bienaymé-Galton-Watson process). The BGW
process (Zn) is a MC on E := N ∪ {0} defined starting from the IID family ξ :=
(ξn,j)(n,j)∈N2 , with P(ξ1,1 ∈ E) = 1. We use the notation pj := P(ξ1,1 = j) and we
assume pj < 1 for every j to avoid trivialities. The chain can be introduced by
iteration once Z0 independent of ξ is given (for conciseness we choose Z0 = 1) via

Zn+1 =

{
ξn+1,1 + ξn+1,2 + . . .+ ξn+1,Zn if Zn > 0,

0 if Zn = 0.
(1.70)

We assume hat µ = E[ξ1,1] =
∑

j jpj = µ ∈ (0,∞) and that p1 < 1 (to avoid

trivialities). Note that in any case Q(0, 0) = 1, so {0} is a ∼-equivalence class and
it is closed. 0 is also accessible if p0 > 0. In practice, the process looses part of its
interest if p0 = 0: 0 is no longer accessible (but we consider this case too). The
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process is also of little interest if pj = 0 for j ≥ 2: in this case all the singletons
are ∼-equivalence classes (all open, hence transient, except for {0}). But if p0 > 0,
p1 > 0 and there exists j ≥ 2 such that pj > 0 then one easily sees that {1, 2, . . .} is
an open ∼-equivalence class.

It is useful to establish that (Zn/µ
n) is a (non-negative) martingale with respect

to the natural filtration of the MC (this is left as exercise). Hence limn Zn/µ
n exists

a.s. and we denote the limit (non-negative) random variable by H. Understanding
whether H ≡ 0 or not is very helpful in understanding the BGW chain.

Exercise 7.3. Show that if µ > 1 and E[ξ21,1] <∞ then the martingale (Zn/µ
n)

is UI (Uniformly Integrable, see [9, Ch. 13]), hence in this case H 6≡ 0.

Solution. Set σ2 := var(ξ1,1), σ
2 > 0 because ξ1,1 is non trivial, and Mn :=

Zn/µ
n. We have that E[Z2

n+1|Zn] = µ2Z2
n + σ2Zn so E[Z2

n+1] = µ2E[Z2
n] + σ2µn and

E[M2
n+1] = E[M2

n]+σ2µ−n−2. Therefore supn E[M2
n] <∞ which implies that (Mn) is

UI. A UI martingale converges a.s. and in L1. So E[limn Zn/µ
n] = E[H] = 1 which

means that H 6≡ 0. �

For s ∈ (0, 1] we introduce also ϕ(s) = E[sξ1,1 ]. Note that (Exercise) ϕ(·) is
convex, increasing and smooth. Since ϕ(0) = lims↘0 ϕ(s) = p0 and ϕ(1) = 1, there
exists only one solution in [0, 1) to the the fixed point equation s = ϕ(s). Call this
solution %.

Proposition 7.4. 0 is a recurrent state for the chain (Zn): note that 0 is
accessible (from any other state, i.e. ρn,0 > 0 for every n) if and only if p0 > 0.
All other states n are transient. Moreover

(1) if µ ≤ 1 then
∑

n 1Zn>0 <∞ a.s. (hence H ≡ 0);
(2) if µ > 1 then P(H = 0) = %, hence 1H=0

∑
n 1Zn>0 < ∞ a.s., and if

E[ξ21,1] < ∞ on the event {H > 0} we have Zn ∼ Hµn a.s. (here ∼ is
aymptotic equivalence).

The only invariant measure can be normalized and it is δ0.

Proof. If p0 = 0 then 0 is not accessible, so we can even choose E = N, and
µ > 1. If p0 > 0 instead 0 becomes accessible.

If µ < 1, recalling that (Zn/µ
n) converges a.s. we see that Zn = O(µn)→ 0 a.s.,

hence Zn = 0 for n sufficiently large because the process (Zn) is integer valued. This
implies directly also that H ≡ 0. In the critical µ = 1 case we can also conclude
that limn Zn = 0, hence that , hence Zn = 0 for n sufficiently large and H ≡ 0,
because limn Zn =: Z∞ exists a.s. and this (a priori random) limit can only be 0
because otherwise Zn(ω) = Z∞(ω) for n sufficiently large and Z∞ 6≡ 0 implies that
ξ ≡ 0, which is impossible. So for µ ≤ 1 (critical and subcritical case) the process
hits (and is absorbes by) 0 in a finite time.

Let us turn to µ > 1. In this case E[Zn] = µn grows exponentially. But this
does not mean that (Zn) grows exponentially, but recall that we know that Zn(ω) ∼
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H(ω)µn where this asymptotic equivalence is properly stated only if H(ω) > 0. And
we did establish that H is not trivial if the ξ variables are in L2.

What happens for µ > 1 is that the process may not grow because it gets to 0
and stays there (extinction). In order to compute the probability of extinction let
us remark that for n ∈ N and s ∈ (0, 1]

E
[
sZn
]

= E
[
E
[
sZn
∣∣Zn−1]] = E

[
ϕ(s)Zn−1

]
, (1.71)

so

E
[
sZn
]

= ϕ ◦ . . . ◦ ϕ(s) =: ϕ◦n(s) . (1.72)

We are now showing thta limn ϕ
◦n(s) = % for every s < 1. Start by remark-

ing that if H(ω) = 0, then Zn = 0 for n large, hence (by Dominated Conver-
gence) limn E[sZn ;H = 0] = P(H = 0) for every s ∈ (0, 1). On the other hand
limn E[sZn ;H > 0] = 0 for every s ∈ (0, 1) (again by Dominated convergence, be-
cause Zn →∞ when H > 0). Hence P(H = 0) = %.

From the MC viewpoint we remark that we have proven that for µ > 1 the chain
may get absorbed by 0 or may go infinity.

For what concerns the invariant measures we remark that we must have in par-
ticular µQ(0) = µ(0), that is µ(0) +

∑∞
j=1 µ(j)Q(j, 0) = µ(0) because Q(0, 0) = 1.

Hence if if p0 > 0, then Q(j, 0) > 0 for every j, and we can conclude that µ(j) = 0
for every j > 0.

On the other hand, if p0 = 0, 0is no longer accessible: nevertheless is Z0 = 0, the,
Zn = 0 for every n, so δ0 is still an invariant probability. But a priori there may be
other measures: since p0 = 0 we may (and do) choose E = N to study whether there
exist other invariant measures. The invariance condition is

∑∞
j=1 µ(j)Q(j, k) = µ(k)

for every k ∈ N. But Q(j, k) = 0 if k < j, so the invariance condition may be written

as
∑k

j=1 µ(j)Q(j, k) = µ(k). In particular µ(1)Q(1, 1) = µ(1), that is µ(1) = 0

because Q(1, 1) = p1 < 1. We can the iterate this argument: if µ(1) = µ(2) = . . . =
µ(k − 1) = 0, then µ(k)Q(k, k) = µ(k) and µ(k) = 0 because Q(k, k) < 1. So there
exists no other invariant measure (and, by restricting E to N in this special case of
p0 = 0, we have found our first example of a MC with no invariant measures). �

7.4. The discrete renewal process. A discrete renewal process is just a ran-
dom walk with positive increments: S0 := 0 and Sn+1 = Sn + ξn+1 with {ξj}j∈N IID
with P(ξ1 ∈ N ∪ {∞}) = 1. If S0 6= 0 (and we choose to work with S0 ≥ 0) we will
say that S is a renewal sequence with delay.

While the random walk viewpoint is natural, it is as natural and at times helpful
for the intuition to consider the renewal process as a point process. By this we
mean that we look at the sequence S (with or without delay) as a random subset
of N ∪ {0} ∪ {∞}: η := {S0, S1, . . .} is the random subset. Note that we do not
exclude the case in which P(ξ =∞) > 0: in this case the renewal set contains only
a finite number of points and ∞. So {k ∈ η} is the event {there exists j = 0, 1, . . .
such that Sj = k}. The points in η are called renewal epochs, the ξ variables are
the inter-arrival variables and η is the renewal set.

Here are two relevant questions for us:
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(1) What is the probability that n is a renewal epoch? That is, what is the
value of u(n) := P(n ∈ η)? Does the limit of the sequence (u(n))n=0,1,...,
called renewal sequence, exist and what is its value?

(2) Consider the intersection of two independent renewal sets with same inter-
arrival law but different delay. Under which conditions is this random set
almost surely not empty?

The first question is a classical important question. The second one solves a
technical step that is going to be important in the general theory of Markov Chains.
But the discrete renewal process provides also a very nice example of fully solvable
Markov chain.

In order to study η we introduce a MC called Backward Recurrence Time process:
An := n − sup{Sk : Sk ≤ n}, that is An is the time elapsed since the last renewal
epoch if we are at time n (see Fig. 1). In particular, η = {n : An} is the zero level set
of the random function n 7→ An, when P(ξ <∞) = 1, otherwise η = {n : An}∪{∞}.

3

0

An

n

S0 = 0 S1 S2 S3 S4 S5 S6

Figure 1. A trajectory of a renewal process without delay (S0 = 0) and, above,
the corresponding backward renewal time (An).

Note that, given An we know that An+1 is either An + 1 or 0. We invite the
reader to provide a proof of the (a priori not obvious) fact that (An) is a MC with
E = N ∪ {0} and for j = 0, 1, . . .

Q(j, j + 1) = P (ξ > j + 1|ξ > j) =
P (ξ > j + 1)

P (ξ > j)
=: pj , , (1.73)

with ξ ∼ ξ1. Of course Q(j, 0) = 1− pj.
Let us forget for a while the ξ variables and let us just consider the Q-MC with

a general sequence of (pj) that are simply numbers in [0, 1]. Note however that if
pj = 0 then the chain cannot climb above j: by (1.73) we see that if pj = 0 then
pk = 0 for every k > j. So we make this hypothesis on the (pj) sequence. In
principle, if pj = 0 for j ≥ K (and pj < 1 otherwise) we could choose as state space
E = {0, 1, . . . , K}, but we will not do so: we can imagine to start with a delay A0
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larger than K, the A1 = 0 and the chain will stay in {0, 1, . . . , K} for all times in N.
The states in {K + 1, K + 2, . . .} are just transient and {0, 1, . . . , K} is the (closed
hence) recurrent class for the MC.

It is straightforward to see that the chain is irreducible if pj > 0 for every j and
if pj < 1 for infinitely many j’s.

Let us try to compute ρ0,0 to decide if the chain is recurrent or transient: if the
chain is not irreducible then the result holds for the class to which 0 belongs, so
for {0, 1, . . . , K} with the notation we used just above. Note that if we keep in the
game the ξ variables we see directly that ρ0,0 = P(ξ < ∞) and, as it is clear from
the origin of the process, 0 is recurrent if and only if the inter-arrivals are a.s. finite.
But let us compute using the (pj) sequence:

P0 (T0 = j + 1) = p0p1 · · · pj−1(1− pj) for j = 0, 1, 2, . . . , (1.74)

where of course we mean P(T0 = 1) = 1− p0. So if we introduce the non increasing
sequence Πj := p0p1 · · · pj−1 for j = 1, 2, . . . and Π0 := 1 we see that

∑n
j=0 P0(T0 =

j + 1) = Π0 − Πn+1 for n = 0, 1, . . .. Therefore

ρ0,0 = P0 (T0 <∞) = Π0 − Π∞ = 1− Π∞ , (1.75)

and the chain is recurrent if and only if Π∞ = 0. And in fact from (1.73) we see
that Π∞ = P(ξ =∞).

Let us turn to the invariant measures. Luckily the computation turns out to be
particularly simple: for j = 1, 2, . . . we have µQ(j) = µ(j) yields µ(j) = µ(j−1)pj−1,
so µ(j) = µ(0)p0p1 · · · pj−1. Moreover µQ(0) = µ(0) yields

∞∑
j=0

µ(j)(1− pj) = µ(0) , (1.76)

that is
∑∞

j=0 p0 · · · pj−1(1− pj) = 1 which simply means that P0(T0 <∞) = 1.
The conclusion is rather remarkable: there exists an invariant measure if and

only if the chain is recurrent! This gives another example of a MC without invariant
measures (we have see that this is the case also for the BGW process when p0 = 0).

Let us investigate when µ can be normalized. Of course the condition is:
∞∑
j=0

µ(j) = µ(0)

(
1 +

∞∑
j=1

p0p1 · · · pj−1

)
< ∞. (1.77)

This becomes more enlightening if we go back to (1.73). In fact (1.77) is equivalent
to 1 +

∑∞
j=1 P(ξ > j) = E[ξ]. So there exists a (unique) probability if and only if

the inter-arrival variable is in L1. And the invariant probability is for j = 0, 1, . . .

π(j) =
P(ξ > j)

E[ξ]
. (1.78)

We are going to pick up again the analysis of the renewal process in Section 6.2
of Chapter 2.





CHAPTER 2

Markov Chains with accessible recurrent states

1. Accessible recurrent states

This chapter is devoted to a class of MC that a priori may look artificial: we
consider MC on a general state space (E, E) and for which there exists x ∈ E such
that

(1) ρx,x = 1, that is x is recurrent;
(2) ρy,x > 0 for every y ∈ E, that is x is accessible (from every state).

In this case for conciseness we will simply say that x is accessible and recurrent.
If only the second condition is satisfied, then x is simply accessible. Note that if x is
recurrent and accessible, then if there is another state y that is recurrent, then, by
Proposition 5.4 of Chapter 1, y is accessible too (in fact, ρx,x = ρx,y = ρy,x = ρy,y =
1). So, if x is recurrent and accessible, we can simply say that the MC is recurrent.
We will see that this generalizes also to finite and null recurrence.

This class of MC of course contains plenty of natural models when E is countable.
We are now going to give an interesting example of a MC with an accessible (possibly
recurrent) state. But we want to stress that in the next chapter we will show that
several MC that do not have accessible states can be related to an auxiliary MC that
has an accessible (possibly recurrent) state and that results proven for the auxiliary
MC can be transferred to the original MC. This of course enhances substantially
the importance of the content of this chapter.

1.1. Reflected walks: the Lindley process. The Lindley process with incre-
ments ξ is the MC with state space E = [0,∞) (E = B(E)) defined in the standard
random dynamical system way by

Xn+1 = (Xn + ξn+1)+ , (2.1)

with the ξ variables taking values in R and of course x+ = max(x, 0). Therefore the
kernel of the Lindley MC is

p(x, [0, y]) = P (ξ1 + x ≤ y) , (2.2)

for every y ≥ 0. In particular

p(x, {0}) = P (ξ1 ≤ −x) . (2.3)

Such a process is a random walk reflected at the origin: In fact, to the Lindley
process we just introduced one naturally associates the random walk S on R, defined
by Sn+1 = Sn + ξn+1. Note that if S0 = X0 = x ≥ 0, then Sn = Xn for n < inf{n :
Sn < 0}, see Fig. 1.

31
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4

0 1 2

Sn
Sn

Xn
Xn

n

Figure 1. A trajectory of a Lindley process (Xn), thick line, and of the un-
derlying random walk (Sn), thin line. The two processes coincide for the first six
steps, so the thick line hides the thin line.

It is clear that 0 is accessible as soon as P(ξ1 < 0) > 0: we are assuming this to
avoid trivialities. Whether 0 is recurrent or not is, in general, less evident, and we
are going to address this issue. But it is for example easy to establish that if ξ1 ∈ L1

and E[ξ1] < 0 then 0 is recurrent (in fact, positive recurrent, where, like in the case
of E countable, positive recurrence means that E0[T0] <∞).

2. Invariant measures and accessibles recurrent states

If x is accessible for the kernel p we introduce the measure λx by setting

λx(A) = Ex

[
Tx∑
j=1

1A(Xj)

]
, (2.4)

for every A ∈ E (and X is a p-MC). Note that if Px(Tx < ∞) = 1, i.e. if x is
recurrent, we have

λx(A) = Ex

[
Tx−1∑
j=0

1A(Xj)

]
, (2.5)

just because Xj = x both at j = 0 and j = Tx.

Theorem 2.1. Choose a probability kernel p which admits an accessible state
x. Then

(1) If x is recurrent then λx is p-invariant.
(2) If λx is p-invariant then x is recurrent.
(3) If x is recurrent and µ is a p-invariant measure, then µ({x}) <∞ and

µ = µ({x})λx.
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(4) If x is recurrent then Ex[Tx] < ∞ if and only if there exists a unique
p-invariant probability π. In this case π = λx/Ex[Tx].

We are going to say that x is positive recurrent if we are in the framework of
point (4), that is if Ex[Tx] < ∞. Of course we say that x is null recurrent if it is
recurrent but Ex[Tx] = ∞. Note that Theorem 2.1 (3) is an essential uniqueness
statement.

Proof. For (1) let us start by showing that λxp = λx. For this we rewrite (2.5)
as

λx(A) = Ex

[
∞∑
j=0

1A(Xj)1{Tx>j}

]
FT
=

∞∑
j=0

Px (Xj ∈ A, Tx > j) =:
∞∑
j=0

p̃j(x,A) ,

(2.6)
and FT marks the application of the Fubini and Tonelli Theorem. Note that p̃j is
a kernel, in the sense that x 7→ p̃n(x,A) is measurable for every A and p̃j(x, ·) is
a measure for every x. Of course p̃j(x,E) ≤ 1 so it is not a probability kernel. In
particular, one sees that if h : E → R is measurable (and positive or bounded),∫
E
p̃j(x, dy)h(y) = Ex[h(Xj);Tx > j]. Note also that

∫
E

λx( dy)p(y, A) =

∫
E

∞∑
j=0

p̃j(x, dy)p(y, A)
FT
=

∞∑
j=0

∫
E

p̃j(x, dy)p(y, A) . (2.7)

Let us therefore show that
glxp = λx and consider first the case x 6∈ A. We have∫

E

p̃j(x, dy)p(y, A) = Ex [p(Xj, A); Tx > j]

= Ex
[
Px
(
Xj+1 ∈ A

∣∣Fj) ; Tx > j
]

= Px (Tx > j, Xj+1 ∈ A)

= Px (Tx > j + 1, Xj+1 ∈ A) = p̃j+1(x,A) ,

(2.8)

where the second step is the (simple) Markov Property, in the third step we used
{Tx > j} ∈ Fj to carry the indicator function inside the conditional expectation,
that then becomes an expectation, and in the fourth step we used x 6∈ A. Therefore
if x 6∈ A we have∫

E

λx( dy)p(y, A) =
∞∑
j=0

p̃j+1(x,A) =
∞∑
j=1

p̃j(x,A)
x 6∈A
=

∞∑
j=0

p̃j(x,A) = λx(A) ,

(2.9)
where in the last step we have used (2.6).
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Let us consider now the case A = {x}: in this case we proceed exactly like
before, except for the last step∫

E

p̃j(x, dy)p(y, {x}) = Ex [p(Xj, {x});Tx > j]

= Ex
[
Px
(
Xj+1 = x

∣∣Fj) ; Tx > j
]

= Px (Tx > j, Xj+1 = x) = Px (Tx = j + 1) .

(2.10)

Recalling (2.6) and we see that this implies that∫
E

λx( dy)p(y, {x}) =
∞∑
j=0

Px (Tx = j + 1) = Px(Tx <∞) (= 1) . (2.11)

But it is straightforward to see also that λx({x}) = Px(Tx < ∞), hence we have
proven that λxp(A) = λx(A) for every A ∈ E .

In order to conclude that λx is invariant we are left to show that it is σ-
finite. For this we use that λx({x}) = 1 < ∞. Since λxpj = λx we have also
λx
∑∞

j=1 2−jpj ≥ λx
∑n

j=1 2−jpj =
∑n

j=1 2−jλxpj = (1 − 2−n)λx for every n, hence

λxp? ≥ λx, where p? has been introduced in (1.23). Since we have assumed that x
is accessible, p?(y, {x}) > 0 for every y ∈ E, which implies that E = ∪n∈N{y ∈ E :
p?(y, {x}) ≥ 1/n} =: ∪n∈NEn. Then

∞ > λx({x}) ≥
∫
E

λx( dy)p?(y, {x}) ≥
∫
En

λx( dy)p?(y, {x}) ≥
1

n
λx (En) .

(2.12)
So λx (En) <∞ for every n and λx is σ-finite. This completes the proof of (1).

For what concerns (2), we have to show that x is recurrent. So let us assume
that x is transient, i.e. Px(Tx =∞) > 0, and let us show that this is incompatible
with the hypothesis that λx is p-invariant. Since qx := Px(Tx =∞) > 0 we set

λ∼x (A) := Ex

[
Tx−1∑
j=0

1A(Xj)

]
, (2.13)

and by direct inspection we see that λ∼x = λx + qxδx. Moreover (2.9) and (2.11)
imply that λ∼x p = λx. Therefore λ∼x p = λx + qxδxp by p-invariance of λx. Since
δxp(A) = p(x,A) is a positive measure, we obtain a contradiction. Hence x is
recurrent and (2) is proven.

For what concerns (3), let us start by observing that, since µ is invariant, it is
σ-finite. So µ({x}) <∞. On the other hand µ({x}) > 0 because µ({x}) = 0 implies
µ ≡ 0 because x is accessible (this can be seen by arguing like in the beginning of
(2.12): 0 = µ({x}) =

∫
E
µ( dy)p∗(y, {x}) implies µ ≡ 0 because p∗(y, {x}) > 0 for

every y).
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The idea now is based on the following scheme: for every A ∈ E

µ(A) = µp(A) = µ({x})p(x,A) +

∫
E\{x}

µ( dy)p(y, A)

= µ({x})Px(X1 ∈ A) + Pµ (X0 6= x,X1 ∈ A)

(2.14)

and then (restarting from the first line of (2.14))

µ(A) = µ({x})p(x,A) +

∫
E\{x}

∫
E

µ( dy′)p(y′, dy)p(y, A)

= µ({x})p(x,A) + µ({x})
∫
E\{x}

p(x, dy)p(y, A)

+

∫
E\{x}

∫
E\{x}

µ( dy′)p(y′, dy)p(y, A)

= µ({x})Px(X1 ∈ A) + µ({x})Px(X1 6= x,X2 ∈ A)

+ Pµ (X0 6= x,X1 6= x,X2 ∈ A) ,

(2.15)

and so on to obtain that for every n

µ(A) = µ({x})
n∑
j=1

Px(Xk 6= x for k = 1, . . . , j − 1, Xj ∈ A)

+ Pµ (Xk 6= x for k = 0, . . . , n− 1, Xn ∈ A) , (2.16)

from which we infer

µ(A) ≥ µ ({x})
∞∑
j=1

Px(Xk 6= x for k = 1, . . . , j − 1, Xj ∈ A)

= µ ({x})
∞∑
j=1

Px(Tx ≥ j, Xj ∈ A)

= µ ({x})Ex

[
Tx∑
j=1

1A(Xj)

]
= µ ({x})λx(A) .

(2.17)

We are now going to exploit accessibility of x (and invariance of µ, by hypothesis,
and of λx, by point (1)) to transform inequality (2.16) into an equality: note that

µ({x}) µp=µ
=

∫
E

µ( dy)p?(y, {x})
(2.16)

≥ µ({x})
∫
E

λx( dy)p?(y, {x})
λxp=λx

= µ({x}) ,

(2.18)
where in the last step we used also λx({x}) = 1. This implies that µ = µ({x})λx.
Suppose in fact that µ 6= µ({x})λx, by (2.16) we know that ν := µ − µ({x})λx is
a (positive) measure for which

∫
E
h(y)ν( dy) = 0, with h(y) := p?(y, {x}) > 0 for

every y, which implies ν(h ≥ 1/n) = 0 for every n, hence ν(E) = 0 because {h ≥
1/n} ↗ E, in contradiction with the assumption µ 6= µ({x})λx. This completes the
proof of point (3).
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For point (4) we observe that, since x is recurrent then λx is p-invariant (by
point (1)) and we have essential uniqueness (by point (3)). We remark that λx(E) =
Ex[Tx]. So if Ex[Tx] < ∞ then λx/Ex[Tx] is the unique p-invariant probability. On
the other hand if λx(E) = Ex[Tx] =∞, any other p-invariant measure is proportional
to λx, hence there does not exist a p-invariant probability. �

We know that the existence of an invariant measure µ with µ(E) = ∞ and
µ({x}) > 0 does not imply that x is recurrent (see for example Section 7.2). On the
other hand the following result is useful:

Proposition 2.2. If π is a p-invariant probability with π({x}) > 0, then x
is recurrent.

Proof. By the Strong Markov Property we know that Ey[Nx] ≤ Ex[Nx] for
every y ∈ E. Therefore, since π is a probability, we have∫

E

π( dy)Ey[Nx] = Eπ[Nx] ≤ Ex[Nx] . (2.19)

But Eπ[Nx] =
∑∞

n=0 Pπ(Xn = x) =
∑∞

n=0 π({x}) = ∞. Therefore x is recurrent.
�

3. Excursions based on a recurrent state and Ratio Limit Theorems

In this section we assume that x is recurrent for p. We recall that T
(j)
x is the

time of jth return to x, so and T
(1)
x = Tx. We put by definition T

(0)
x := 0. A very

efficient tool is the decomposition of a trajectory of the MC into excursions from
x to x: an excursion from x to x is a trajectory of variable length that starts with
x and ends with x, and no visit to x in the middle. We can see an excursion as
a random variable taking values in a suitable probability space, but we will take a
more implicit approach: a (measurable) function of an excursion in fact is just a
FTx- measurable random variable.

The key point is that excursions are independent, and even IID if we work with
Px. The key result to establish this is the following consequence of the Strong
Markov Property:

Proposition 3.1. If x is a recurrent state for p and if, for every k ∈ N,
H0, . . . , Hk are FTx-measurable non-negative or bounded random variables, then
for every choice of X0 such that P(Tx <∞) = 1

E

[
k∏
j=0

Hj ◦ θT (j)
x

]
= E [H0]

k∏
j=1

Ex [Hj] . (2.20)

Proof. We proceed by induction. For k = 1 by the Strong Markov Property

E [H0 (H1 ◦ θTx)] = E
[
H0EXTx [H1]

]
, (2.21)

and, since P(Tx <∞) = 1, we replace XTx by x and (2.20) follows for k = 1.
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If (2.20) holds for k ≥ 1 and any P such that P(Tx < ∞) = 1, then using that

θ
T

(j)
x

= θ
T

(j−1)
x
◦ θTx on {T (j)

x <∞} and that P(T
(j)
x <∞) = 1 we see that

E

[
k+1∏
j=0

Hj ◦ θT (j)
x

]
= E

[
H0

((
k+1∏
j=1

Hj ◦ θT (j−1)
x

)
◦ θTx

)]

= E [H0]Ex

[
k+1∏
j=1

Hj ◦ θT (j−1)
x

]
= E [H0]

k+1∏
j=1

Ex [Hj] ,

(2.22)

where in the second step we used the Strong Markov Property and in the last step
we used the induction hypothesis for P = Px. �

Here is a direct consequence of Proposition 3.1. For f : E → R we set

Z0(x, f) :=
Tx∑
k=1

f(Xk) , (2.23)

and for j ∈ N

Zj(x, f) := Z0(x, f) ◦ θ
T

(j)
x

=

T
(j+1)
x∑

k=T
(j)
x +1

f(Xk) . (2.24)

Corollary 3.2. Under the hypotheses of Proposition 3.1, for every f mea-
surable we have that (Zj(x, f))j=0,1,... is a sequence of independent random vari-
ables and (Zj(x, f))j=1,2,... is an IID sequence. In particular, if P = Px, then
(Zj(x, f))j=0,1,... is IID.

The major consequence of Corollary 3.2 (and of the Law of Large Numbers for
IID sequences is the following result that makes invariant measures very relevant for
the asymptotic behavior of MCs with one recurrent state (and not only when the
invariant measure can be normalized):

Theorem 3.3 (Ratio Limit Theorem). Let p be a Markov kernel admitting
an accessible recurrent state and call λ the (essentially unique) invariant mea-
sure. Then for every choice of the law of X0 such that P(Tx <∞) = 1 we have
that for every f, g such that

∫
E
|f | dλ <∞,

∫
E
|g| dλ <∞ and

∫
E
g dλ 6= 0

P
(

lim
n→∞

∑n
k=1 f(Xk)∑n
k=1 g(Xk)

=

∫
E
f dλ∫

E
g dλ

)
= 1 . (2.25)

Proof. By Theorem 2.1 (1) and (3) we know that λ = λ({x})λx so we can
replace λ with λx. Then Theorem 3.3 is a direct consequence of

P
(

lim
n→∞

∑n
k=1 f(Xk)∑n

k=1 1{x}(Xk)
=

∫
E

f dλx

)
= 1 , (2.26)

for f non negative and measurable.
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Let us first show (2.26) with P = Px. In this case (Zj(x, f))j∈N is an IID sequence

(Corollary 3.2). Note that Ex[Zj(x, f)] = Ex[
∑Tx

k=1 f(Xk)] =
∫
E
f dλx for every j.

Moreover
T

(m)
x∑
k=1

f(Xk) =
m−1∑
j=0

Zj(x, f) , (2.27)

so Kolmogorov Law of Large Numbers yields that

Px

 lim
m→∞

1

n

Tx(m)∑
k=1

f(Xk) =

∫
E

f dλx

 = 1 . (2.28)

This of course remains true if m is replaced by any N valued sequence (even random)
(Ln) such that Px(limn Ln =∞) = 1. We choose

Ln =
n∑
k=1

1{x}(Xk) , (2.29)

and limn Ln = ∞ λx-a.s. because x is recurrent. Note that T
(Ln)
x ≤ n < T

(Ln+1)
x .

Next we remark that∑T
(Ln)
x

k=1 f(Xk)

Ln
≤

∑n
k=1 f(Xk)∑n

k=1 1{x}(Xk)
≤ Ln+1

Ln

∑Tx(Ln+1)
k=1 f(Xk)

Ln + 1
. (2.30)

By taking n→∞ we obtain (2.26) with P = Px.
The general case is a straightforward exercise that uses the Strong Markov Prop-

erty, or even directly the Law of Large Numbers when the first random variable
in the sequence has a different law with respect to the other variables in the se-
quence. Of course we need that this first variable is a.s. finite, for which we use
that P(Tx <∞) = 1. �

A direct corollary to the Ratio Limit Theorem in the positive recurrent case is
the a.s. Ergodic Theorem for MC (of course, the a.s. Ergodic Theorem, also known
as Birkhoff Ergodic Theorem, holds in much greater generality):

Corollary 3.4 (Almost Sure Ergodic Theorem for Markov Chains). Let p
be a Markov kernel admitting an accessible recurrent state and assume that x is
positive recurrent (i.e. λx(E) <∞ and we set π := λx/λx(E)). Then for every
choice of the law of X0 such that P(Tx < ∞) = 1 and for every f measurable
and positive or such that

∫
E
f dπ <∞ we have

P

(
lim
n→∞

1

n

n∑
k=1

f(Xk) =

∫
E

f dπ

)
= 1 . (2.31)

Proof. Apply Theorem 3.3 with g ≡ 1. �
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Also in he null recurrent case we have an interesting consequence of the Ratio
Limit Theorem:

Corollary 3.5. Let p be a Markov kernel admitting an accessible recurrent
state and assume that x is null recurrent (i.e. λx(E) = ∞). Then if f is such
that

∫
E
|f | dλx <∞ we have

P

(
lim
n→∞

1

n

n∑
k=1

f(Xk) = 0

)
= 1 . (2.32)

Proof. In this case one is tempted to choose again g ≡ 1 in Theorem 3.3. But
in this case

∫
E
g dλx = ∞. To get around this problem we use the fact that λx is

σ-finite so for every ε > 0 we can find an event Fε such that 1/ε ≤ λx(Fε) < ∞.
Therefore Theorem 3.3 with g = 1Fε yields that

P
(

lim
n→∞

∑n
k=1 f(Xk)∑n
k=1 g(Xk)

=

∫
E
f dλx∫

E
g dλx

)
= 1 . (2.33)

Since |
∫
E
f dλx|/

∫
E
g dλx ≤ ε

∫
E
|f | dλx we conclude. �

4. The Ergodic Theorem

The Almost Sure Ergodic Theorem for Markov Chains (Corollary 3.4) directly
yields that, in presence of a finite recurrent accessible state x, for every initial
condition and every A ∈ E

lim
n→∞

1

n

n∑
k=1

P(Xk ∈ A) = π(A) . (2.34)

This result cannot be improved to limn→∞ P(Xn ∈ A) = π(A) in full generality:
consider in fact that irreducible MC with E = {1, 2} and Q(1, 2) = Q(2, 1) = 1
(hence Q(1, 1) = Q(2, 2) = 0). In this case P1(Xn = 1) = Qn(1, 1) = 0 if n is odd
and Qn(1, 1) = 2 if n is even. So (P1(Xn = 1))n∈N does not converge.

In fact the only problem that we have to watch out for is the periodicity that is
evident in the simple example we just developed.

Given p, we say that the period tx of a state x is the Greatest Common Divisor
(GCD) of Ex := {n = 1, 2, . . . : pn(x, {x}) > 0}, with GCD(∅) = ∞. If tx = 1
then we say that x is aperiodic. There are two relevant facts about periods that we
collect in the next statement:

Proposition 4.1. Choose a Markov kernel p. We have that

(1) if x is accessible, then there exists n0 such that pntx(x, {x}) > 0 for
every n > n0;

(2) if x and y are accessible, then tx = ty.
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Proof. For what concerns (1) we start by remarking that, since x is accessible,
Ex is not empty, hence tx < ∞. If tx > 1, then we can consider Ex/tx := {n/tx :
n ∈ Ex} and we are back to tx = 1. So let us treat the case tx = 1: note that Ex
is stable under addition (by the usual Markov Kernel trick). Moreover, since the
GCD of Ex is 1 we can find {n1, . . . , nm} ⊂ Ex such that the GCD of {n1, . . . , nm}
is 1 (we can assume without loss of generality that m ≥ 2, because if m = 1
then n1 = 1 and there is nothing to prove). So, by Bézout identity (or Lemma),
there exists r1, . . . , rm ∈ Z such that

∑m
j=1 rjnj = 1. We rewrite this identity as

a :=
∑

j: rj>0 rjnj = 1 +
∑

j: rj<0 |rj|nj =: 1 + b. Note that a, b ∈ Ex since Ex is

stable under addition. By Euclidean division we can write any n ∈ N as n = qb+ r
with r ∈ {0, . . . , b− 1} and q = 0, 1, . . .. Therefore n = qb+ r(a− b) = (q− r)b+ ra.
If n is larger than b2 we have that q − r ≥ 0 and (again, stability under addition)
n ∈ Ex. Point (1) is therefore proven.

For what concerns (2) we recall that accessibility implies that tx < ∞ and
ty < ∞. Let us show that ty ≥ tx: choose n ∈ Ey. By accessibility there exists
nx,y such that pnx,y(x, {y}) > 0 and there exists ny,x such that pny,x(y, {x}) > 0:
therefore both nx,y + ny,x and nx,y + n + ny,x are in Ex. Therefore nx,y + ny,x is a
multiple of tx and so is n. Hence ty ≥ tx. Since the argument can be repeated by
exchanging x and y, tx = ty. �

The Ergodic Theorem is stated in terms of the total variation between probability
measures: if µ and ν are two probabilities on (E, E)

dTV(µ, ν) := sup
A∈E

(µ(A)− ν(A)) . (2.35)

Various facts about the total variation distance are discussed in Section 7, notably
that that convergence in total variation is stronger that weak convergence of prob-
abilities, which is evident from (2.61) (but the two types of convergence coincide if
E is countable, see Proposition 7.2).

Theorem 4.2. Choose a Markov kernel p that admits an accessible, aperi-
odic, positive recurrent state. Denote by π the unique p-invariant probability.
Then for every probability µ on (E, E) such that Pµ(Tx <∞) = 1 we have

lim
n→∞

dTV(µpn, π) = 0 . (2.36)

Proof. Let us start by remarking that

dTV(µpn, π) = sup
A

(Pµ(Xn ∈ A)− π(A)) = sup
A
|Pµ(Xn ∈ A)− π(A)|

≤
∫
E

sup
A
|Py(Xn ∈ A)− π(A)|µ( dy) , (2.37)

So, by Dominated Convergence, it suffices to show that

lim
n

sup
A
|Py(Xn ∈ A)− π(A)| = 0 , (2.38)
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µ( dy)-a.s..
We give a proof of (2.38) based on independent coupling, in the sense that we

consider the process (X
(1)
n , X

(2)
n )n=0,1,... with (X(1))n=0,1,... a p-MC with X(1))0 =

y and (X(2))n=0,1,... a p-MC with X(2))0 with law π. Moreover (X(1))n=0,1,... and
(X(2))n=0,1,... are independent.

In fact, (X
(1)
n , X

(2)
n )n=0,1,... is a MC with state space E × E equipped with the

standard product σ-algebra: we leave the proof of this fact to the reader, but we
point out that the kernel p(2) of this new Markov chain from the state (y, z) ∈ E×E
to an event of the form A × B is p(2)((y, z), A × B) = p(y, A)p(z, B). Let us re-
mark that π× π is p(2)-invariant. Moreover, if x is an accessible recurrent aperiodic
state for p, then (x, x) is an accessible recurrent state for p(2). In fact, it is acces-

sible because for every (y, z) there exists ny,z such that p
(2)
ny,z+n((y, z), {(x, x)}) =

pny,z+n(y, {x})pny,z+n(z, {x}) > 0 for every n ≥ 0: this follows from the accessibility
of x and aperiodicity (this is the only, but crucial, point in which aperiodicity is
used!), see Proposition 4.1. We now use that π × π is an invariant probability, so
Proposition 2.2 tells us that x is (positive) recurrent and Theorem 2.1, parts (1)
and (3), imply that π × π is the unique p(2)-invariant probability. We use the sim-
plified notation T for the stopping time T [(x,x) (we work with the natural filtration

of (X
(1)
n , X

(2)
n )n=0,1,...):

T := inf
{
n = 0, 1, . . . : X(1)

n = X(2)
n = x

}
. (2.39)

We have

|Py(Xn ∈ A)− π(A)| =
∣∣Eδy×π [1A (X(1)

n

)
− 1A

(
X(2)
n

)]∣∣
=
∣∣Eδy×π [1A (X(1)

n

)
− 1A

(
X(2)
n

)
; T > n

]∣∣
≤ Pδy×π (T > n) ,

(2.40)

where in the second step we have used that

Eδy×π
[
1A
(
X(1)
n

)
− 1A

(
X(2)
n

)
; T ≤ n

]
= 0 , (2.41)

which is a consequence of the Strong Markov Property that implies that for j ≤ n
and on the event {T = j} we have

Eδy×π
[
1A
(
X(1)
n

)
− 1A

(
X(2)
n

) ∣∣FT ] = pn−j(x,A)− pn−j(x,A) = 0 . (2.42)

So we are left with showing that limn Pδy×π (T > n) = 0, µ( dy)-a.s..

Remark 4.3. It is rather intuitive (and we claim) that Pπ(Tx < ∞) = 1. Here
is a proof: call C := {y : Py(Tx < ∞) = 1} and x ∈ C. Then for y ∈ C we
have 0 = Py(Tx = ∞) = Py(X1 6= x, Tx ◦ θ1 = ∞) ≥ Py(X1 6∈ C, Tx ◦ θ1 = ∞) =
Ey[PX1(Tx = ∞);X1 6∈ C]. Since PX1(Tx = ∞) > 0 for X1 6∈ C we see that
Py(X1 6∈ C) = 0. This means that C is closed (the process cannot get out of it).
Hence

λx(C) = Ex[
Tx∑
k=1

1C(Xk)] = Ex[Tx] , (2.43)
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which completes the proof of the claim.

In view of Remark 4.3, it suffices to show that limn P(y,z) (T > n) = 0, µ ×
π( d(y, z))-a.s., i.e. P(y,z) (T <∞) = 1, µ× π( d(y, z))-a.s..

Remark 4.4. If E is countable and given the assumption of accessibility of x,
one sees that the support of π, i.e. E0 := {x : π(x) > 0}, is closed fo the Markov
chain (and E \ E0 is transient). Hence it suffices to show that P(y,z) (T <∞) = 1
for every y, z ∈ E0. Moreover the p-MC is irreducible on this set (Proposition 5.4 of
Chapter 1). Moreover aperiodicity implies that pn(x, {x}) > 0 for n sufficiently large
(in fact, for every x ∈ E0). Therefore pn(y, {x})pn(z, {x}) > 0 for n sufficiently
large too, for every y and z in E0. This means that P(y,z) (T <∞) = 1 for every
y, z ∈ E0 and the proof of Theorem 4.2 is complete. If E is not countable this
argument is no longer available and we attack the problem using renewal theory.

The last step of the proof that can be restated in terms of renewals (and inter-
section renewals).

For this we introduce the sequence (τ
(1)
j )j=1,2,... of the times of successive visits

to x by (X
(1)
n )n=0,1,...: so τ

(1)
j = T

(j)
x for the MC (X

(1)
n ). In the same way we call

(τ
(2)
j )j=1,2,... of the times of successive visits to x by (X

(2)
n )n=0,1,.... Note that this are

a.s. infinite sequences of finite numbers because we have assumed Pµ(Tx <∞) = 1
and we have proven Pπ(Tx < ∞) = 1. Moreover, by the Strong Markov Property,
we know that (

τ
(1)
j+1 − τ

(1)
j

)
j=1,2,...

and
(
τ
(2)
j+1 − τ

(2)
j

)
j=1,2,...

, (2.44)

are two IID sequences. More than that, these two sequence are equal in law because
they are just IID sequences of random variables that have the same law as Tx
for the p-MC with X0 = x. By the hypothesis of positive recurrence we have

that Ex[Tx] < ∞. Note that this means that (τ
(1)
j )j=1,2,... and (τ

(2)
j )j=1,2,... are two

independent random walks with positive increments that are in L1. In different

language, (τ
(1)
j ) and (τ

(2)
j ) are two independent delayed positive persistent renewals

with the same inter-arrival law. Moreover, they are aperiodic because the original
Markov chain is aperiodic, see Proposition 6.3.

Therefore P(y,z) (T <∞) = 1 is a direct consequence of Proposition 6.5 and the
proof of Theorem 4.2 is complete. �

5. The Lindley process

The Lindley MC has been introduced in Sec. 1.1, to which we refer for the
notations (ξn), (Xn) and (Sn).

An extremely precise understanding of the Lindley MC has been developed (see
for example [1] and references therein) and we will just touch a few aspects of all
this activity. Let us start by observing that, by construction, Xn ≥ Sn for every n.
So, if limn Sn = ∞ a.s., this happens in particular when ξ1 ∈ L1 and E[ξ1] > 0 by
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the Law of Large Numbers, then Xn →∞ and N0 <∞ a.s.: so 0 is transient (recall
that we assume that P(ξ1 < 0) > 0, so 0 is accessible).

There is an interesting direct link between the Lindley process with X0 = 0 and
the random walk (Sn) with S0 = 0. In fact, it is straightforward to see that the

return times (T
(j)
0 )j=0,1,... of 0 by (Xn) are the descending ladder times of (Sn): the

descending ladder times are defined by setting τ0 = 0 and, for k ≥ 0, τk+1 := inf{n >
τk : Sn ≤ Sτk}. So the ladder times are the times in which the walk hits a new

minimum. The identity we just claimed is actually pathwise: that is T
(j)
0 (ω) = τj(ω)

for every ω.
One can show that (Sn) has only three possible behaviors [1, p. 224, Th. 2.4]:

(1) either Sn →∞ a.s.;
(2) or Sn → −∞ a.s.;
(3) or lim supn Sn = +∞ and lim infn Sn = −∞ a.s.;

and P(τ1 <∞) = 1 if and only if we are in cases (2) or (3). Therefore ((2) or (3)) is
a necessary and sufficient condition for recurrence of the Lindley process. So (Xn)
is null recurrent if and only if (Sn) is in case (3), and this happens if and only if
ξ ∈ L1 and Eξ1 = 0 or ξ ∼ −ξ. In Proposition 5.2 we will show a part of these
results: namely, that Sn → −∞ implies that (Xn) is positive recurrent.

We are now going to show remarkable identity for the Lindley MC (and then we
develop some consequences):

Proposition 5.1. If hξ(x) = (x+ ξ)+ we have that for every x ≥ 0

hξ1 ◦hξ2 ◦ . . .◦hξn (x) = max (0, ξ1, ξ1 + ξ2, . . . , ξ1 + . . .+ ξn−1, ξ1 + . . . , ξn + x) .
(2.45)

Proposition 5.1 acquires its interest if we recall (1.7)

Xn = hξn ◦ hξn−1 ◦ . . . ◦ hξ1 (x) , (2.46)

and for the the Lindley MC hξ(x) = (x+ξ)+, so (Xn) is a Lindley MC with X0 = x.
And even if Xn does not coincide at all with the quantity in (2.45), nevertheless
these two random variables have the same law

Xn ∼ Yn := hξ1 ◦ hξ2 ◦ . . . ◦ hξn (x) , (2.47)

because (ξ1, ξ2, . . . , ξn) ∼ (ξn, ξn−1, . . . , ξ1).
Let us however stress that (Xn) 6∼ (Yn): they are not at all the same process. In

particular, if x = 0 then (Yn) is non decreasing, while of course (Xn) oscillates up
and down! See Fig. 1.

Proof of Proposition 5.1. Let us deal with the case x = 0 (the generaliza-
tion is immediate). The proof follows by induction because hξ1(0) = (ξ1)+ which
is the first step of the induction. The iterative step uses that for every x ≥ 0 and
y ∈ R

(x+ y+)+ = max (0, x, x+ y) , (2.48)

which can be established by considering separately the cases y ≥ 0 and y < 0. �
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Here is a remarquable consequence of Proposition 5.1.

Proposition 5.2. If Sn → −∞ a.s. then the Lindley MC (Xn) converges
in total variation toward a limit law that is the unique invariant probability and
the process is positive recurrent.

Proof. If Sn → −∞ then for every x we have limn Yn := Y∞ <∞ exists! And

Y∞ := max (0, ξ1, ξ1 + ξ2, . . .) . (2.49)

Note that Y∞ does not depend on x.
Since Xn ∼ Yn we readily obtain that, for every X0 = x ≥ 0, (Xn) converges in

law to Y∞. Let us show that the law of Y∞ is an invariant probability for (Xn): for
this we introduce a variable ξ0 such that (ξj)j=0,1,... is IID. We have limn hξ0(Yn) =
hξ0(Y∞), just because hξ0(ω)(·) is continuous (if we want to be pedantic we say a.s.
continuous to leave out the zero probability event that ξ0 = ∞). But hξ0(Yn) ∼
hξn+1(Xn) = Xn+1, which converges in law to Y∞. This means that hξ0(Y∞) ∼ Y∞,
hence the law of Y∞ is an invariant probability.

It is straightforward to see that P(Y∞ = 0) > 0 by exploiting that its law is
invariant and that P(ξ1 < 0) > 0. Therefore by Proposition 2.2 we have that 0 is
recurrent and, by Theorem 2.1, we obtain uniqueness of the invariant measure that
is a probability.

We are left with improving the convergence in law to convergence in total vari-
ation. For this we apply Theorem 4.2: the only property that we are left to verify
is aperiodicity. But p(0, {0}) = P(ξ1 ≤ 0) > 0 hance 0 is aperiodic and the proof is
complete. �

In the previous proof we exploited the general theory to infer uniqueness of
the invariant probability. We could have extracted uniqueness (among probability
measures) from the fact that we know the weak convergence of the process and that
the limit does not depend on the initial condition.

Proposition 5.3. (Xn) is a (p, E)-MC and if (Xn) converges in law to X∞
for every initial condition X0 = x ∈ E. If there exists an invariant probability
π, then X∞ ∼ π (hence π is the unique invariant probability).

Proof. The hypotheses can be restated by saying that the n-step Markov kernel
pn(x, ·) computed at x, converges weakly to the law ν of X∞ and this holds for every
x ∈ E. Therefore for every h ∈ C0

b and every n (and passing to n → ∞ in the last
step we have∫

E

h(y)π( dy) =

∫
E

h(y)πpn( dy) =

∫
E

h(y)

∫
E

π( dx)pn(x, dy)

=

∫
E

(∫
E

h(y)pn(x, dy)

)
π( dx) −→

∫
E

h(y)ν( dy) , (2.50)

hence π = ν. �



6. BACK TO MARKOV CHAINS WITH COUNTABLE STATE SPACE 45

6. Back to Markov chains with countable state space

6.1. Random walks on Z. We focus on the MC defined by the iteration
Xn+1 = Xn + ξn+1 with X0 ∈ Z and the IID sequence (ξn) is make of random
variables of law Pξ, and of course Pξ(Z) = 1, so we write Pξ(x) for Pξ({x}). We
assume that ξ is not trivial, that is Pξ(x) < 1 for every x. Note that for this MC
p(x, {y}) = Q(x, y) = Pξ(y−x). This is particular implies that U(x, y) just depends
on y − x, so either all states are recurrent, or they are all transient. Moreover it
implies also that the uniform measure µ on Z (µ(x) = 1 for every x ∈ Z) is invariant.

The issue of essential uniqueness of this invariant measure, at least in the case in
which x is positive recurrent, depends on whether or not x is accessible. Note that
if ξ takes values only on even (respectively, odd) sites, then even sites communicate
only with even (respectively, odd) sites. So, in general, E = Z can be decomposed
into equivalence classes and the uniform measure over the equivalence class is going
to be invariant. And this invariant measure is going to be the (essentially) unique
invariant measure that is supported on a given equivalence class. In any case, we
can conclude that that no state is positive recurrent for for random walks on Z.

Let us look more carefully at the irreducibility issue. We have the following
result (that can be easily generalized also to dimension larger than one):

Proposition 6.1. A random walk on Z with increment variable ξ for which
a state (hence all) is recurrent is irreducible if and only if the subgroup generated
by the support of the law of ξ is Z.

Proof. Since Q(x, y) = Pξ(y−x) for every x and y, it suffices to consider the cas
X0 = 0. Let us call G subgroup generated by the support of Pξ. It is straightforward
that P0(Xn ∈ G for every n) = 1. Therefore if G 6= Z, the MC is not irreducible.
On the other hand, if G = Z then we consider the set H0 := {y : U(0, y) > 0} and
we remark that H0 is a subgroup of Z. In fact

(1) 0 ∈ H0 because U(0, 0) > 0 by definition;
(2) if x, y ∈ H0 then there exist nx and ny such that Qnx(0, x) > 0 and

Qny(0, y) > 0, hence

Qnx+ny(0, x+ y) ≥ Qnx(0, x)Qny(x, x+ y) = Qnx(0, x)Qny(0, y) > 0 , (2.51)

so x+ y ∈∈ H0;
(3) x ∈ H0 means U(0, x) > 0, which implies (Proposition 5.4 of Chapter 1)

U(x, 0) > 0 because 0 (or x) is recurrent. But in this case U(x, 0) =
U(0,−x), hence −x ∈ H0.

Since we have assumed that G = Z, we have that H0 = Z, so any state is
accessible from 0 and, since 0 is recurrent (again: Proposition 5.4 of Chapter 1) we
obtain that all states communicate. �
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Proposition 6.2. Consider a random walk on Z with increment variable ξ
such that ξ ∈ L1: x ∈ Z is recurrent if and only if E[ξ] = 0.

The only if part of Proposition 6.2 is straightforward and holds also in higher
dimension. The if part is much less trivial and d = 1 is crucially used.

Proof. The only if part is a direct consequence of Kolmogorov Law of Large
Numbers. Let us focus on the if part and let us choose x = 0 without loss of
generality.

We proceed by contradiction and assume that U(0, 0) <∞. We start by recalling
that U(0, x) ≤ U(x, x) = U(0, 0). Therefore

∑n
x=−n U(0, x) ≤ (2n + 1)U(0, 0), i.e.

for every n ∈ N we have
n∑

x=−n

U(0, x) ≤ C with C := 3U(0, 0) . (2.52)

On the other hand limnXn/n = 0 a.s. by the Law of Large Numbers. Hence for
every ε > 0 we can find nε such that for n ≥ nε we have

P (|Xn| ≤ εn) =
∑

x: |x|≤εn

Qn(0, x) >
1

2
. (2.53)

By elementary arguments we have therefore that for every choice of n1 ≥ m ≥ n0

we have ∑
x: |x|≤εn1

Qm(0, x) ≥
∑

x: |x|≤εm

Qm(0, x) >
1

2
. (2.54)

By summing over m = n0, n0 + 1, . . . , n1 we arrive at
n1∑

m=n0

∑
x: |x|≤εn1

Qm(0, x) >
n1 − n0

2
, (2.55)

which directly entails that
∑
|x|≤εn1

U(0, x) > (n1 − n0)/2 ∼ n1/2 for n1 → ∞.

Let us make now the definite choice of ε := 1/(3C): by (2.52) we have that∑
|x|≤εn1

U(0, x) ≤ Cεn1 = n1/3. Therefore for n1 sufficiently large a contradic-

tion emerges and this denies the assumption U(0, 0) < ∞. Therefore U(0, 0) = ∞
and the proof is complete. �

6.2. Back to discrete renewals. We pick up again the analysis from Sec-
tion 7.4 of Chapter 1. Let us first show that the following result that is an exercise
in establishing aperiodicity of a chain that has a direct applications to the remainder
of this subsection.

Proposition 6.3. Assume that the backward recurrence time MC (An) is
irreducible. (An) is aperiodic if and only if the support of ξ is aperiodic (i.e. if
{n ∈ N : P(ξ = n) > 0} ⊂ dN only for d = 1).
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Proof. We observe that E0 := {n : Qn(0, 0) > 0} = {n : P(
∑n

j=1 ξj) > 0} =

{
∑k

j=1 xj : k ∈ N and xj belongs to the support of ξ for every j}. Moreover E0

is clearly stable under addition. Set d :=GCD(E0): Bézout Theorem implies that
there exists n0 such that nd ∈ E0 for every n ≥ n0. So if the support of ξ is aperiodic
we have d = 1, hence 0 is aperiodic for (An). On the other hand if 0 is aperiodic for
(An), d = 1 by definition. �

Theorem 6.4 (Discrete Renewal Theorem). Consider η an aperiodic re-
newal with inter-arrival variable ξ. Then

lim
n→∞

P (n ∈ η) =
1

E[ξ]
∈ (1,∞] . (2.56)

Proof. We prove the result without delay (the case with delay follows di-
rectly from the result without delay). We have that P (n ∈ η) = P0(An = 0) and,
by Theorem 4.2 (and Remark 4.4), if the renewal is positive persistent we have
limn P0(An = 0) = π({0}), where π is the invariant probability in (1.78). So the
proof is complete in the positive persistent case.

In the transient case the result is a direct consequence of the Dominated Con-
vergence Theorem, because 1η(n) = 0 for n sufficiently large.

ADD: null recurrent case.
�

We recall that the renewal set η = {n ∈ N : An = 0} if (An) is recurrent. In
this case, η is an infinite set. When (An) is recurrent (respectively, transient) we say
that the renewal is persistent (respectively, terminating). We say that η is positive
persistent if (An) is positive recurrent, i.e. if the inter-arrival variable is in L1.

Proposition 6.5. Consider two independent positive persistent delayed re-
newals η = {η0, η1, . . .} ans η′ = {η′0, η′1, . . .} that share the same inter-arrival
law. We assume in addition that the inter-arrival law is aperiodic. Then
η ∩ η′ 6= ∅ a.s..

Proof. It suffices to consider the case which η has no delay (i.e., η0 = 0).
Moreover since η′ is a.s. an infinite set, it suffices to show that for every infinite
subset H ⊂ N we have

P(η ∩H 6= ∅) = 1 . (2.57)

In fact, we are going to show that η ∩H is a.s. an infinite set.
It is practical at this stage to look at the renewal process as a random walk (Sn)

with positive increments, hence living on the non negative integers: η = {S0, S1, . . .}.
The fact that η is positive persistent means that E[S1] = E[Sj+1 − Sj] < ∞. With
standard notation Tn = T Sn is the first hitting time (notice that in this case T [n = Tn)
and {n ∈ η} = {Tn < ∞}. Therefore u(n) := P(Tn < ∞) is the renewal function
and limn u(n) = 1/E[S1] =: 2δ > 0 by the Discrete Renewal Theorem (Theorem 6.4).
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Therefore there exists k such that u(n) ≥ δ for every n ≥ k. In turn, since H is
an infinite subset of N ∪ {0}, for every i we can choose j ∈ H in such a way that
j ≥ i+ k, so

δ ≤ P (Tj−i <∞) . (2.58)

If we now consider the renewal with delay i, that is S0 = i instead of S0 = 0 as we did
up to now, so the law of S is denoted by Pi (and P = P0), we have P (Tj−i <∞) =
Pi (Tj <∞) and, since j ∈ H, Pi (Tj <∞) ≤ Pi (TH <∞). Therefore

inf
i=0,1,...

Pi (TH <∞) ≥ δ . (2.59)

Therefore by Proposition 5.6 applied to the MC (Sn) (even with an arbitrary law of
S0, but for us S0 = 0 suffices) with A = N∪{0}, so NA =∞ because τ is persistent,
and B = H, we obtain that NH =∞ a.s., that is (Sn) visits H infinitely often. The
proof is therefore complete. �

7. Complements: the total variation distance

We have introduced the distance in total variation between probability measures
in (2.35). Let us point out that

dTV(µ, ν) = sup
A∈E
|µ(A)− ν(A)| , (2.60)

because A can be replaced by A{. From (2.60) its is clear that dTV(·, ·) is a distance.

Here is an equivalent expression for the total variation distance:

dTV(µ, ν) =
1

2
sup

f : ‖f‖∞≤1

(∫
E

f dµ−
∫
E

f dν

)
. (2.61)

That the right-hand side dominates dTV(µ, ν) is seen by choosing f = 1A − 1A{ =
21A− 1. The other bound may be established by remarking that

∫
f dµ−

∫
f dν =∫

f d(µ − ν)+ −
∫
f d(µ − ν)− where we have written the signed measure µ − ν as

difference of the two positive measures (µ − ν)± with disjoint support. Call A+,
respectively A−, the support of (µ − ν)+, respectively of (µ − ν)−. For ‖f‖∞ ≤ 1
we therefore have∫

f dµ−
∫
f dν ≤

∫
1A+ d(µ− ν)+ −

∫
1A− d(µ− ν)−

=

∫ (
1A+ − 1A−

)
d(µ− ν)

=

∫ (
2 1A+ − 1

)
d(µ− ν) = 2 (µ (A+)− ν (A+)) .

(2.62)

Therefore (2.61) is proven.
Note that (2.61) directly implies that convergence in total variation is stronger

than weak convergence. In fact (µn) converges to µ weakly if
∫
E
f dµn →

∫
E
fµ for

every f bounded and continuous: the convergence in total variation demands that
this convergence holds for every bounded function, and uniformly in the class of
functions bounded by a a fixed constant.
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The next result says that if µ and ν are both absolutely continuous with respect
to a measure, then the distance in total variation is 1/2 times the L1 norm of the
difference of the densities. This makes clear that in general convergence in total
variation is strictly stronger than the standard (weak) convergence of probabilities.
In fact, if a sequence of probabilities that admit a density converges in total varia-
tions, then the limit admits a density. So, for example, if Xn ∼ N (, 1/n), then of
course (Xn) converges in law toward 0, i.e. the law of Xn converges weakly toward
δ0. But the law of (Xn) does not converge to δ0 in total variation.

Proposition 7.1. If the probabilities µ and ν (on (E, E)) are absolutely
continuous with respect to the σ-finite measure λ, hence µ = fµλ and ν = fνλ
with fµ and fν non negative measurable functions, then

dTV(µ, ν) =
1

2
‖fµ − fν‖L1(λ) . (2.63)

Proof. By (2.61)

dTV(µ, ν) =
1

2
sup

f : ‖f‖∞≤1

(∫
E

f fµ dλ−
∫
E

f fν dλ

)
≤ 1

2

∫
E

|fµ − fν | dλ , (2.64)

The other bound is obtained by choosing f = 1fµ>fν − 1fµ<fν in (2.61). �

On the other hand, if E is countable then weak converge and convergence in
total variation coincide. Here is the precise statement:

Proposition 7.2. If E is countable and endowed with the discrete topology
(then every subset of E is a Borel set, consistent with our choice of E) and (µn)
is a sequence of probabilities on (E, E) then (µn) converges in total variation
if and only if it converges weakly. This convergence takes place if and only if
limn µn(x) =: µ(x) for every x and

∑
x µ(x) = 1.

Proof. Let us start by remarking that in this countable context we have

dTV(µ, ν) =
1

2

∑
x∈E

|µ(x)− ν(x)| , (2.65)

because, by Proposition 7.1, x 7→ µ(x) and x 7→ ν(x) may be seen as densities
respectively of µ and ν with respect to the counting measure (defined by λ(x) := 1
for every x).

We already know that convergence in total variation implies weak convergence
(in full generality). Let us show the converse statement in the countable set up:
assume that (µn) converges weakly to µ. Then, by using the test function 1{x},
limn µn(x) = µ(x) for every x. For every ε > 0 there exists a finite subset K of
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E with µ(K) ≥ 1 − ε/2. Hence there exists n0 such that µn(K) ≥ 1 − ε for every
n ≥ n0. But by (2.65)

dTV(µn, µ) ≤ 1

2

∑
x∈K

|µn(x)− µ(x)|+ 1

2

(
µn

(
K{
)

+ µ
(
K{
))

n≥n0

≤ 1

2

∑
x∈K

|µn(x)− µ(x)|+ ε ,

(2.66)

and by passing to the limit n→∞ we see that (µn) converges toi µ in total variation.
Note that the convergence (weak) convergence of (µn)) to µ embodies the fact

that µ is a probability. But the existence of the limit limn µn(x) =: µ(x) does not
implies that µ is a probability, i.e.

∑
x µ(x) = 1. But the argument we just gave

shows that the existence of the limit limn µn(x) =: µ(x) and
∑

x µ(x) = 1 yields
convergence (in total variation, hence also weak convergence). �

Finally wide point out the following coupling viewpoint on convergence in total
variation. We exploit the fact that a probability on E may be viewed as the law of
an E valued random variable.

Proposition 7.3. We have that

dTV(µ, ν) = inf
X∼µ,Y∼ν

P(X 6= Y ) , (2.67)

where X and Y are random variables defined on the same probability space.

Proof. The upper bound is easy: from (2.35) we have that for every choice of
X ∼ µ and Y ∼ ν on the same probability space

dTV(µ, ν) = sup
A

E [1A(X)− 1A(Y )] = sup
A

E [1A(X)− 1A(Y ); X 6= Y ] ≤ P(X 6= Y ).

(2.68)
For the lower bound we refer to [7, Ch.I, Th. 5.2]. �



CHAPTER 3

General Markov Chains

1. Harris Markov chains

A lot of interesting MC have no recurrent accessible state. In fact, in plenty of
cases (think of a random walk with increment law that gives measure zero to every
state, for example when the increment law has a density with respect to Lebesgue)
no state is accessible (leave alone being recurrent). T. Harris ideas in this context
is: can we modify the MC so that the new MC has an accessible recurrent state and
such that we can relate results for the new MC to the original MC?

This is possible for a class of MC that we call Harris MC. To be precise, in
general to an Harris MC we can associate a new MC with an accessible state. This
state may not be recurrent: proving recurrence requires more work, but it is not
difficult to give conditions that are sufficient for recurrence.

We say that a p-MC is Harris if there exist A and B in E , ε > 0 and a probability
ρ on (E, E) with ρ(B) = 1 such that

(1) A is accessible;
(2) if x ∈ A et C ⊂ B, C ∈ E , we have p(x,C) ≥ ερ(C).

Let us give immediately some examples that are not particularly interesting, but
they start giving a gist of what Harris chains are.

• If E is countable and x is accessible we can take A = {x} and B = {y},
any y such that Q(x, y) =: ε > 0. End ρ is the Knornecker delta on y. In
particular any irreducible MC with E countable is Harris.
• A random walk on R, Xn+1 = Xn+ξn+1, with ξ ∼ U(−1, 1). In this case we

can choose A = B = [−1/2, 1/2], ρ the uniform measure on B and ε = 1/2.
It is straightforward to show that A is accessible.
• A chain is said atomic if it possesses an atom, that is a measurable set A

such that p(x, dy) = ν( dy) for every x. If this atom is accessible then the
chain is Harris with A the atom, B = E, ρ = ν and ε = 1.

Consider now a p-MC that is Harris. We build the auxiliary chain that is going
to be on the enlarged state space Eα := E ∪ α, with α a singleton, that is α
contains only one element, that (with abuse of notation) we call α. The σ-algebra
of measurable subsets of Eα is Eα := {C,C ∪α : C ∈ E}. The probability kernel pα

51
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of the auxiliary chain is introduced first by defining pα(x,C) for x ∈ E

pα(x,C) :=


p(x,C) if x ∈ E \ A and C ∈ E ,
ε if x ∈ A and C = α,

p(x,C)− ερ(C) if x ∈ A and C ∈ E ,
(3.1)

and the first line implies that pα(x, α) = 0 for x ∈ E \A because pα is a probability
kernel, and then by completing the definition with

pα(α,C) :=

∫
E

pα(y, C)ρ( dy) , (3.2)

where of course we can replace E with B as region of integration.

Remark 1.1. pα is a probability kernel because pα(x,Eα) = 1 for x ∈ E \ A as
we have already seen. For x ∈ A we have pα(x,Eα) = p(x,E)− ερ(E) + ε = 1 and
of course pα(α,Eα) =

∫
E
pα(y, Eα)ρ( dy) = 1. We remark also that

pα(α, α) = ερ(A) = ερ(A ∩B) , (3.3)

so in general the chain cannot go from α to α in one step. But α is aperiodic for the
pα-MC if ρ(A∩B) > 0 (of course this is only a sufficient condition for aperiodicity).

So α is an accessible state for pα-MC. If we are able to show (and we will develop
examples in this direction) that α is recurrent then we know that there exists an
(essentially unique) pα-invariant measure. So we can apply the Ratio Limit Theorem.
And if the invariant measure is normalizable we can also apply the Ergodic Theorem
(with convergence in total variation distance). Of course these results are interesting
if we can export them to the p-MC! But this is the case as we show now.

We start by introducing the elementary probability kernel v : Eα × Eα → [0, 1]
by setting v(x, {x}) = 1 if x ∈ E and v(α,C) = ρ(C) if C ∈ E . Note that these
requirements identify v because they imply that v(x, α) = 0 for every x ∈ Eα. So
this kernel sends states in Eα into E: if the state is in E the kernel does nothing, if
the state is α then it is sent inside E, in fact in B, according to the law ρ.

Lemma 1.2. vpα = pα as kernels on Eα × Eα and pαv = p as kernels on
E × E.

Proof. For the first identity we take C ∈ Eα and observe that

vpα(α,C) =

∫
Eα

v(α, dy)pα(y, C) =

∫
E

ρ( dy)pα(y, C)
(3.2)
= pα(α,C) . (3.4)

If x ∈ E instead

vpα(x,C) =

∫
E

v(x, dy)pα(y, C) = pα(x,C) , (3.5)

so the first identity is established.
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For the second one we compute for x ∈ E and C ∈ E

pαv(x,C) =

∫
Eα

pα(x, dy)v(y, C) = pα(x, α)v(α,C) +

∫
E

pα(x, dy)v(y, C)

= ε1A(x)ρ(C)+1A(x)

∫
C

(p(x, dy)− ερ( dy))+1A{(x)

∫
C

p(x, dy) = p(x,C) ,

(3.6)

and the proof is complete. �

We are now building an inhomogeneous MC, that is a MC in which the kernel
depends on the time. In fact, the process we build is only very mildly inhomogeneous:
we just use a different probability kernel for even and odd times: for even times we
apply the kernel v (that takes a process from the state Eα and puts it into E by
doing nothing if the process is already in E and by taking α to a random point
distributed according to ρ otherwise) and for odd times we apply the kernel pα, that
moves the process from E to Eα. The point is to realize that this process for even
times is a pα-MC (on Eα) and for odd times it is our original p-MC on E.

We formalize this discussion (still keep a bit at an informal level, but little work is
needed to make everything proper, except that one would have to introduce heavier
notations). The process (Yn)n=0,1,... is a sequence of Eα valued random variables
and if we call µ the law of Y0, for every m = 2, 4, 6, . . . and every choice of events
A0, . . . , Am in Eα

P (Yj ∈ Aj, j = 1, . . . ,m) =∫
A0

∫
A1

. . .

∫
Am

µ(dy0)v(y0, dy1)p
α(y1, dy2) · · · v(ym−2, dym−1)p

α(ym−1, dym) ,

(3.7)

and by choosing Am = Eα we obtain the corresponding expression for m odd.

Lemma 1.3. (Y2n)n=0,1,... is a pα-MC. Moreover P(Y2n+1 ∈ E) = 1 for every
n = 0, 1, . . . and (Y2n+1)n=0,1,... is a p-MC.

Proof. This is just a matter of observing that the kernel from time 2n to time
2n+ 2 is vpα which coincides with pα by Lemma 1.2. On the other hand, the kernel
from time 2n + 1 to time 2n + 3 is pαv which coincides with p, always because of
Lemma 1.2. �

A priori one may worry whether with this procedure we cover all p-MC, i.e. is
it true that, given a law µ on E, we can find a law for Y0 so that Y1 is distributed
according to µ? The answer is yes because it suffices to choose Y0 according to
µα which is the probability on Eα that assigns measure zero to α and such that
µα(C) = µ(C) for every C ∈ E .
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Then it is not difficult to see that for every f : E → R (measurable and bounded
or positive)

Eµ [f(Xn)] = Eµα [f(Y2n+1)] = Eµα [vf(Y2n)] , (3.8)

where (Xn) is a p-MC. Note that vf : Eα → R, in fact vf(x) = f(x) if x ∈ E and
vf(α) =

∫
f dρ.

2. Contractive Markov chains

Let us put ourselves in the Random Dynamical Systems context (or formalism),
i.e. in the context of Proposition 1.4. When the function h that defines the ran-
dom dynamical system has good contractive properties we can directly control the
time asymptotic behavior of the MC and establish existence and uniqueness of the
invariant probability. For this we need to assume that the state space E is metric:
d denotes the distance between states. Here is the result:

Proposition 2.1. Let us fix a measurable h : E × E ′ → E (recall the
notation h(x, ξ) = hξ(x)). Let us assume that

(1) there exists a measurable function K : E ′ → [0,∞) such that

d (hξ(x), hξ(y)) ≤ K(ξ) d(x, y) (3.9)

for every x, y ∈ E and every ξ ∈ E ′, and E[log+K(ξ1)] <∞ as well as
E[logK(ξ1)] < 0;

(2) there exists y ∈ E such that E[log+ d(y, hξ1(y)] <∞.

Then for every initial condition X0 = x ∈ E the MC (Xn) converges a.s. to an
E valued random variable X∞ that does not depend on x. Moreover the law of
X∞ is the unique invariant probability of the MC.

We give a full proof of Proposition 2.1 only for a particular model: the Ran-
dom Coefficient Autoregressive Markov Chain. The arguments we develop in this
restricted context should allow the interested reader to develop a full proof of Propo-
sition 2.1.

2.1. Random Coefficient Autoregressive MC. The basic Random Coef-
ficient Autoregressive (RCA) MC is defined iteratively, once the initial condition
X0 = x ∈ R is given, by

Xn+1 = Kn+1Xn + Cn+1 =: fKn+1,Jn+1(Xn) , (3.10)

with ((Kn, Jn))n∈N and IID sequence of random variables taking values in R2. Note
that in this case

|fK,J(x)− fK,J(y)| ≤ |K| |x− y| , (3.11)

so this process has good contractive properties if log |K| ∈ L1 and E log |K| < 0.
In order to make this clear and explicit let us consider the particular case in which
Jn = Kn for every n, so

Xn+1 = Kn+1 (1 +Xn) =: fKn+1(Xn) , (3.12)
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and let us simplify things a bit by choosing the K variables non negative and non
trivial (recall that we assume logK ∈ L1 and E logK < 0). In this case it is not
difficult to see that if x < 0, the stopping time inf{n : Xn ≥ 0} is a.s. finite, so the
negative semi-axis is transient, but we will work in any case with E = R and what
we just claimed will come out of the analysis we will develop.

By direct inspection it is not difficult to see that

Xn = fKn ◦ . . . ◦ fK1(x) =

Kn +KnKn−1 +KnKn−1Kn−2 + . . .+KnKn−1 · · ·K2 +KnKn−1 · · ·K1(1 + x) .
(3.13)

If we reverse the engine of this MC we obtain

Yn := fK1 ◦ . . . ◦ fKn(x) =

K1 +K1K2 +K1K2K3 + . . .+K1K2 · · ·Kn−1 +K1K2 · · ·Kn(1 + x) , (3.14)

which is an increasing process if x ≥ 0. But even if x < 0, it is not difficult to see
that limn Yn := Y∞

Y∞ :=
∞∑
n=1

n∏
j=1

Kj , (3.15)

exists and it is a.s. finite. In fact, by the law of large numbers (1/n) logK1K2 · · ·Kn −→
E logK < 0, so for every β ∈ (exp(E logK), 1) there exists C(ω) (C is an a.s. finite
random variable) such that for every n ∈ N

K1(ω)K2(ω) · · ·Kn(ω) ≤ C(ω)βn . (3.16)

This suffices to show that (Yn(ω)) is a.s. a Cauchy sequence and therefore the limit
limn Yn =: Y∞ exists a.s.. Note that (3.16) yields also that the limit is independent
of the value of x. Note moreover that Y∞ is supported on [0,∞). And now by
exploiting that Xn ∼ Yn for every n we can complete (Exercise) the proof of

Proposition 2.2. The random coefficient autoregressive process defines by
(3.12) has a unique invariant probability ν and for every initial condition x ∈ R
we have (Xn) converges in law to Y∞.

This result can be easily generalized almost (verbatim) to the case in which
J = J1 is random with E[(log |J |)+] < ∞ and to the case in which the K and J
variables assume also negative values. Of course the invariant probability will no
longer be supported on the positive semi-axis.

Remark 2.3. The invariant probability is more interesting than it looks at first.
Note, for example, that even if K(= J) ≥ 0 is a bounded random variable, Y∞ may
not even be in L1. In fact

E[Y∞] =
∞∑
n=1

(E[K])n , (3.17)
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so E[Y∞] < ∞ if and only if E[K] < 1. With some work (but not too much) it is
also possible to see that an analogous result holds for all moments: E[Y k

∞] < ∞ if
and only if E[Kk] < 1. Therefore Y∞ has a heavy tail unless E[Kk] < 1 for every k,
which requires P(K < 1) = 1 (i.e., that the process is contractive for every ω, not
just in a probabilistic sense).

Sticking for simplicity to the case (3.12), let us address the question of whether
this process is a Harris MC. This requires conditions on law of K. We will not try
to look for optimal conditions and we start by observing that if K is a continuous
random variable – we denote by f its density – then measure p(x, ·), p is the transi-
tion kernel, has density y 7→ f(y/(1+x))/(1+x). In particular for x = 1 the map is
y 7→ f(y/2)/2 Therefore if f(1/2) > 0, by continuity we can find ε0 > 0 and δ > 0
such that f(y/(1 + x))/(1 + x) ≥ ε0 uniformly in x, y ∈ [1− δ, 1 + δ]. Therefore we
can choose A = B = [1 − δ, 1 + δ], ρ the uniform mesure on B, and ε = 2δε0 and
satisfy the second of the Harris requirement.

But also the first Harris requirement is fulfilled. In fact it suffices to show that
for every x ∈ R we can find a value of n and a1, . . . , an ∈ Iη := (−η + 1/2, η + 1/2)
(we are choosing η so that infIη f > 0) we have that

an + anan−1 + . . .+ . . .+ anan−1 · · · a2 + anan−1 · · · a1(1 + x) ∈ (1− δ, 1 + δ) . (3.18)

Once this is established, the result is obtained because (3.18) holds also in an open
neighborhood of (a1, . . . , an). The requirement (3.18) may appear difficult to es-
tablish, but it is not the case. In fact, it suffices to remark that if x < 1 then
x < (1 + x)/2 < 1, so even by choosing simply aj = 1/2 for every j we will hit
the target (of becoming larger than 1 − δ) in a finite number of steps. Analogous
reasoning for x > 1.

As a matter of fact, the argument we just developed shows that the chain is
Harris with A = B = [1 − δ, 1 + δ] and suitable choice of ε (ρ is the uniform
probability on B) under the assumption that the law of K is bounded below by a
measure with a density f that is continuous and f(1/2) > 0.

Remark 2.4. A similar argument can be developed if f(x) > 0 for x ∈ (1/2, 1].

Remark 2.5. Another interesting point is to notice that the minimum of the
support of the invariant probability can be determined with precision: if we call a,
a < 1 by hypothesis, the minimum of the support of the law of K, then by iterating
from x = 0 we see that the support of the invariant probability does not go below
a+ a2 + . . . = a/(1− a). Just a slightly more involved argument gives the bound in
the other direction. On the other hand the supremum of the support of the invariant
probability is +∞, since we are assuming that the maximum of the support of K is
larger than one.

In the cases in which we are able to prove that the MC is Harris, we can apply
the general theory and conclude that , under the assumption that E[logK] < 0, the
only invariant measure is the invariant probability and that pn(x, ·) converges to
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the invariant probability in total variation distance for every x such that Px(TA <
∞) = 1. But we know by the weak convergence result (obtained by exploiting the
convergence in law result in Proposition 2.2) that limn Ex[h(Xn)] =

∫
h dν for every

x (ν is the invariant probability). By choosing h to be a smoothed version of 1A we
see that the chain that starts from x visits A a.s., that is Px(TA <∞) = 1 for every
x.

3. Feller chains and Foster-Lyapunov criteria

In this section we assume that E is a metric space, d is the notation for the
distance, and the elements of E are the Borel subsets of E. Moreover for the results
in this section the notion of Feller kernel is important: we say that p is Feller if
pf ∈ C0 (hence pf ∈ C0

b ) for every f ∈ C0
b . Note that if p is Feller, so are pn (any

n) and p? (given in (1.23)).

Exercise 3.1. If the p-MC (Xn) is defined by the random dynamical system
Xn+1 = h(Xn, ξn+1) (see Proposition 1.4) and if x 7→ h(x, ξ) is C0 for almost every
ξ, then p is Feller.

Solution. If limn xn = x we have pf(xn) = E[f(h(xn, ξ))] −→ E[f(h(x, ξ))] =
pf(x) by Dominated Convergence, because f ◦ hξ is C0 for almost every ξ and it is
bounded. �

For n ∈ N, µ a probability and p a Markov kernel we introduce the probability

πn = πµn = πµ,pn :=
1

n

n−1∑
j=0

µpk . (3.19)

Lemma 3.2. If p is Feller then for every µ we have that the limit of every
weakly convergent subsequence of (πµ,pn ) is a p-invariant probability.

Proof. This is a direct consequence of the identity

πnp = πn +
1

n
(µpn − µ) . (3.20)

In fact, assume without loss of generality that (πn) converges weakly to π. For
f ∈ C0

b we have
∫
E
f d(πnp) =

∫
E
pf dπn and by the Feller property we obtain that

(πnp) converges to πp. On the other hand |
∫
E
f d(µpn − µ)|/n ≤ 2‖f‖∞/n and we

obtain that πp = π. �

Lemma 3.2 hides the difficulty in the convergence assumption that embodies the
fact that the limit is a probability. In turn, the fact that the limit is a probability
is due to the test functions for the weak convergence we consider, that is C0

b . And
it is not at all granted that (πµ,pn ) has a convergent subsequence: as an example we
can take the (Feller) Kernel p(x, dy) = δx+1( dy) for which pnf(x) = f(x+ n). The
problem is of course that, no matter what the initial condition is, πn in this case
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concentrates (i.e., gives probability 1− ε, any ε > 0) on a set that walks out to +∞
as n becomes large.

In spite of the very special nature of this example, it captures the only problem
that can happen. This is the content of the next result, Prohorov Theorem, for
which we need the notion of tightness (we just give it for sequences): a sequence
(µn) of probabilities on (E, E), with E a topological space, is said tight if for every
ε > 0 there exists a compact K ⊂ E such that µn(K) ≥ 1− ε for every n.

Theorem 3.3 (Prohorov Theorem). If E is a metric space and (µn) is tight,
then every subsequence of (µn) contains a weakly convergent subsequence.

For a proof of Prohorov Theorem (along with a necessary and sufficient version
of it) we refer to [3, Ch. 1, Sec. 5]. For the simpler case of E = R (in this context
the result is often called Helly-Bray Lemma or Helly’s Theorem) see for example [2,
p. 336].

Here is the first Foster-Lyapunov tool to control that the probability does not
escape to infinity in time. It directly yields tightness, as a the result of a strong
quantitative bound (at the expense of strong assumptions, that we will weaken in
the Foster-Lyapunov arguments that follow this first one).

Proposition 3.4. Assume that there exists V : E → [0,∞] measurable with
V (x0) <∞ for a state x0 and that satisfies

pV + f ≤ V + b , (3.21)

for a b ∈ R and for f : E → R measurable, bounded below and such that
{x ∈ E : f(x) ≤ c} is relatively compact (i.e., its closure is compact) for every

c. Then
(
π
δx0
n

)
is tight and, if p is Feller, there exists a p-invatiant probability.

Proof. Let us start with the non crucial remark the one can always choose
f ≥ 0 by an appropriate choice of b. By applying the kernel to both terms of (3.21)
and by using again (3.21) we obtain

p2V + pf ≤ pV + b ≤ V + 2b− f , (3.22)

that is

p2V + pf + f ≤ V + 2b , (3.23)

and we can iterate this procedure to obtain

pnV +
n−1∑
k=0

pkf ≤ pV + nb . (3.24)

Therefore, since V ≥ 0, we obtain

1

n

n−1∑
k=0

pkf(x0) ≤
1

n
V (x0) + b , (3.25)
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that yields

π
δx0
n f ≤ V (x0) + b , (3.26)

for every n. By considering the (relatively) compact set Kc = {x : f(x) ≤ c} for
c > 0 we readily see that

π
δx0
n

(
K{c

)
≤ 1

c
π
δx0
n f ≤ V (x0) + b

n
, (3.27)

which implies that
(
π
δx0
n

)
is tight. The proof is completed by Prohorov Theorem

and by applying Lemma 3.2. �

The next result yields existence of an invariant probability under much weaker
hypotheses (but it requires conditions on the metric space, so, strictly speaking, the
hypotheses are weaker only if we restrict to the metric spaces to which the result
applies). This new result does not really yield explicit estimates.

Proposition 3.5. If E is a locally compact and separable metric space, p is
Feller and there exists a measurable function V : E → [0,∞] with V (x0) < ∞
for a state x0 and such that

pV + 1 ≤ V + b1K , (3.28)

for a positive constant b and K a compact subset of E, then there exists a p-
invariant probability.

Proof. The proof uses the weak-∗ convergence of (finite) measures: a sequence
of positive finite measures (µn) weak-∗ converges if there exists a finite measure µ
such that limn

∫
E
h dµn =

∫
E
h dµ for every h ∈ C0

c (E;R), that is for every h which
is continuous and compactly supported. The key point here is that from every
subsequence of (µn) one can extract a weak-∗ convergent subsequence. In general,
weak-∗ limit measures can be null measures. When dealing with probabilities, weak-
∗ convergence readily yields that µ(K) ≤ 1 for every weak-∗ limit µ and every
compact set K. So µ(E) ≤ 1 and, in general, µ is a subprobability (and, again, it
can be that µ(E) = 0). On the other hand, if there exists a compact set K such
that µn(K) ≥ ε > 0 for every n, then for every weak-∗ limit µ we have µ(K) ≥ ε.

We are going to apply these facts to
(
π
δx0 ,p
n

)
, like for Propositon 3.4. And, like

in the proof of the same proposition, by iterating (3.28) we obtain

V ≥ pV + 1− b1K

≥ p (V + 1− b1K) + 1− b1K = p2V + 2− b p1K − b1K

≥ pnV + n− b
n−1∑
j=0

pk1K ,

(3.29)

that is

V (x0) ≥ pnV (x0) + n− b
n−1∑
j=0

pk(x0, K) , (3.30)
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that we rewrite as
1

n
V (x0) ≥

1

n
pnV (x0) + 1− b πδx0 ,pn (K) , (3.31)

and we use this last bound to obtain

b π
δx0 ,p
n (K) ≥ 1− 1

n
V (x0) . (3.32)

Therefore for any weak-∗ limit µ of
(
π
δx0 ,p
n

)
we have µ(K) ≥ 1/b.

On the other hand, by recalling (3.20), we see that (with πn = π
δx0 ,p
n ) for every

h bounded

|πnph− πnh| ≤
2

n
‖h‖∞ . (3.33)

We now apply this bound with h ∈ C0
c and h ≥ 0 so that, if the weak-∗ limit of (πnj)

is µ, we obtain that
∫
E
ph dµ ≤

∫
E
h dµ, which readily yields that µp(A) ≤ µ(A) for

every A ∈ E . On the other hand, µp(E) = µ(E) (this holds for every measure µ)
and therefore µp(A) = µ(A) for every A ∈ E .

Now we recall that µ(K) > 0 so µ is not null. A priori we know that µ is
a subprobability, so we can normalize it to be a probability: π := µ/µ(E) and
πp = π. We have therefore found a p-invariant probability. �

3.1. A Foster-Lyapunov argument for (null) recurrence. Roughly, we
would like to say that if we can find V bounded below such that limx: |x|→∞ V (x) =∞
and such that pV ≤ V outside of a compact set, then the p-MC is recurrent. In
order to minimize introducing definitions, we give a minimal version of this result
that is tailored to the two applications we give.

Proposition 3.6. Let us consider E = [l,∞), l ∈ R, and a p-MC on this
space. We assume that there exists V : E → [0,∞) which outside of a bounded
set satisfies two properties:

(1) V is (strictly) increasing and limx→∞ V (x) =∞;
(2) pV ≤ V .

We also assume that for every x outside of a bounded set there exists ε > 0 such
that infy∈Bε(x) Py(TBε(x){ <∞) > 0 with Bε(x) := {z : |z − x| < ε}. Then there

exists r > l such that for every x ∈ E we have Px(T[l,r] <∞) = 1.

The condition on Py(TBε(x){ <∞) > 0 is a very weak requirement (see applica-

tions) in order to avoid that the process gets stuck at some x for arbitrarily large
x.

The proof is given as a guided exercise.

Proof. First of all note (Exercise) that the hypothesis involving Bε(x) implies
that Px(

∑
n 1Bε(x){(Xn) = ∞) = 1. Moreover, we can choose r > l such that the

hypotheses hold for x ≥ r. We set for conciseness T = T[l,r] (the hitting time of
[l, r]) and we introduce Yn := V (Xn∧T ) for n = 0, 1, . . .. The process (Yn)n=0,1,... is
a super-martingale for every choice of Y0 = x ∈ E (Exercise: note that by iterating
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pV ≤ V + b1[l,r], that holds by hypothesis for a positive b, we obtain Yn ∈ L1 for
every n). Since Yn ≥ 0 we have that (Yn(ω)) converges to a limit that we call
Y∞(ω) <∞ for every ω ∈ G, with Px(G) = 1.

If there exists x such that Px(T[l,r] = ∞) > 0 then for ω ∈ {T[l,r] = ∞} ∩ G we
have that Xn(ω) > r for every n and therefore Yn(ω) = V (Xn(ω)) −→ Y∞(ω) <∞.
Since V diverges at infinity and since it is a bijection on the region we consider, we
obtain that (Xn(ω)) converges to a limit in X∞(ω) ∈ [r,∞). But this means that
Xn(ω) ∈ Bε(X∞(ω)) for every ε > 0 and all n large and this is incompatible with
our hypothesis on the exit probability. Therefore Px(T[l,r] =∞) = 0 for every x. �

3.1.1. Application to the Lindley MC with centered drift. We consider the Lind-
ley MC with E[ξ] = 0 (we recall that we exclude the trivial case of ξ ≡ 0). We
treat only the case in which there exists L such that P(ξ < −L) = 0. This is an
assumption that simplifies (a lot!) the analysis: it is possible to generalize this result
at least to the case in which the variance of ξ is finite (with the very same choice of
V ). We choose V (x) = log(1 + x), x ∈ [0,∞) = E. We remark that the following
elementary bound holds: for y > −1

log(1 + y) ≤ y − 1

2
y21y<0 . (3.34)

Then

pV (x) = E [log (1 + (x+ ξ)+)] = V (x) + E
[
log

(
1 +

(x+ ξ)+ − x
1 + x

)]
. (3.35)

If x > L then a.s. (x+ ξ)+ = x. Therefore for x > L

pV (x)− V (x) = E
[
log

(
1 +

ξ

1 + x

)]
≤ − 1

2(1 + x)2
E[ξ2; ξ < 0] . (3.36)

Therefore pV (x) < V (x) for every x > L. Finally, in this case and outside [0, L], the
evolution is just a random walk and since ξ is centered and nontrivial, we have that
p(y,By(2ε)

{) = P(ξ ∈ B0(2ε)
{) =: pε > 0 for y > L and ε > 0, so p(y,Bx(ε)) ≥ pε

for every y ∈ Bx(ε) and x > L+ ε. Therefore we can apply Proposition 3.6 and the
set [0, L+ ε] is visited infinitely often by the MC. From this one easily extracts that
also 0 is visited infinitely often (so 0, and the whole MC since 0 is accessible from
every x, is recurrent).

3.1.2. Application to the RCA MC with E[logK] = 0. Also in this case we sim-
plify our life by making a strong assumption on the support of logK: there exists
L such that P(logK > −L) = 1.

The first step is to work with Zn := logXn:

Zn+1 = logKn+1+log (1 + exp(Zn)) = logKn+1+Zn+log (1 + exp(−Zn)) , (3.37)

which makes clear that Z behaves almost as a random walk when it is positive and
far from the origin. On the other hand, Z has a lot of difficulty to enter the negative
semi axis. In fact, since ξ ≥ −L, if Z0 < −L then Z1 ≥ −L and Zn ∈ [−L,∞) for
every n ≥ 1. So we can choose E = [−L,∞).
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We then choose V (x) = log+(x) for x > 0 and V (x) = 0 for x ∈ [−L, 0]. Since
ξ ≥ −L for x ≥ L+ 1

pV (z) = log z + E
[
log

(
1 +

logK

z
+

log(1 + exp(−z))

z

)]
, (3.38)

so by (3.34)

pV (z) = V (z) +
log(1 + exp(−z))

z
−

1

2z2
E
[
(logK + log(1 + exp(−z)))2 ; logK + log(1 + exp(−z)) < 0

]
z→∞
= V (z) +O

(
exp(−z)

z

)
− 1

2z2
(
E
[
(logK)2 ; logK < 0

]
+ o(1)

)
. (3.39)

Therefore there exists M > L + 1 such that pV (z) ≤ V (z) for every z ≥ M . The
argument to show that Z cannot visit infinitely many times a neighborhood of a point
goes pretty much as for the Lindley case. Therefore we can apply Proposition 3.6
and conclude that [−L,M ] is a.s. visited by Z and therefore [exp(−L], exp(M)] is
a.s. visited by the RCA MC X.
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