
Complements and additional material for

“Markov Chains” (2022/23)

Giambattista Giacomin

5045 Bât. Sophie Germain (Campus PRG)
Email address : giacomin@lpsm.paris
URL: https://www.lpsm.paris/users/giacomin/index





2. BIRTH AND DEATH CHAIN 3

1. Branching process (Bienaymé-Galton-Watson process)

The BGW process (Zn) is a MC on E := N ∪ {0} defined starting from the IID
family ξ := (ξn,j)(n,j)∈N2 , with P(ξ1,1 ∈ E) = 1. We use the notation pj := P(ξ1,1 =
j). The chain can be introduced by iteration once Z0 independent of ξ is given
(unless otherwise said, we choose Z0 = 1) via

Zn+1 =

{
ξn+1,1 + ξn+1,2 + . . .+ ξn+1,Zn if Zn > 0,

0 if Zn = 0.
(1)

We assume hat µ = E[ξ1,1] =
∑

j jpi = µ ∈ (0,∞) and that p1 < 1 (to avoid

trivialities).

It is useful to establish that (Zn/µ
n) is a (non-negative) martingale with respect

to the natural filtration of the MC (Exercise). Hence limn Zn/µ
n exists a.s. and we

denote the limit (non-negative) random variable by H. Check that if E[ξ21,1] < ∞
then the martingale is UI (Uniformly Integrable), hence in this case H 6=≡ 0. For
s ∈ (0, 1] we introduce also ϕ(s) = E[sξ1,1 ]. Note that (Exercise) ϕ(·) is convex,
increasing and smooth. Since ϕ(0) = lims↘0 ϕ(s) = p0 and ϕ(1) = 1, there exists
only one solution in [0, 1) to the the fixed point equation s = ϕ(s). Call this solution
%

Proposition 1.1. 0 is a recurrent state for the chain (Zn): note that 0 is
accessible from any other state (i.e., ρn,0 > 0) if and only if p0 > 0. All other
states n are transient. Moreover

(1) if µ ≤ 1 then
∑

n 1Zn>0 <∞ a.s. (hence H ≡ 0);
(2) if µ > 1 then P(H = 0) = ρ, hence 1H=0

∑
n 1Zn>0 < ∞ a.s., and if

E[ξ21,1] < ∞ on the event {H > 0} we have Zn ∼ Hµn a.s. (here ∼ is
aymptotic equivalence.

The only (σ-finite) invariant measure can be normalized and it is δ0.

Proof: Exercise.

2. Birth and death chain

E = N ∪ {0} and Q is defined by

Q(j, j + 1) = pj , Q(j, j − 1) = qj , Q(j, j) = rj, (2)

with pj + qj + rj = 1 for every j. We assume that pj > 0 for every j ∈ E, qj > 0 for
every j ∈ E \ {0} and q0 = 0.

This MC is irreducible, moreover it is aperiodic if and only if there exists j such
that rj > 0 (Exercise).

We introduce the function ϕ : E 7→ [0,∞) defined by ϕ(0) = 0, ϕ(1) = 1 and by
imposing that

(Qϕ)(k) = ϕ(k) , (3)
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for k ∈ N. This yields (ϕ(k + 1)− ϕ(k)) = (qk/pk)(ϕ(k)− ϕ(k − 1)) for k ≥ 1 and
therefore for n ≥ 2

ϕ(n) = 1 +
n−1∑
m=1

m∏
j=1

qj
pj
. (4)

Note that limn→∞ ϕ(n) =: ϕ(∞) exists and takes value in (1,∞]. We set Ta :=
inf{n = 0, 1, . . . : Xn = a}. By the Optional Stopping Theorem we have that, for
a < x < b, ϕ(x) = Ex[ϕ(XTa∧Tb ] from which we readily extract

Px(Tb > Ta) =
ϕ(x)− ϕ(a)

ϕ(b)− ϕ(a)
=⇒ Px(Tb > T0) =

ϕ(x)

ϕ(b)
. (5)

Note finally that ν(x) :=
∏x

k=1(pk−1/qk) is reversible for Q.

We can therefore conclude that (Exercise):

Proposition 2.1. The birth and death MC is recurrent if and only if ϕ(∞) =
∞. In this case ν is unique up to a multiplicative factor. Moreover it is finite
recurrent if and only if

∑
x

∏x
k=1(pk−1/qk) <∞.

Note that this result implies in particular that the symmetric simple random
walk is null recurrent, as well as the well known fact that an asymmetric simple
random walk is transient.

3. Discrete renewal processes

The basic object is τ = {τj}j=0,1,... with τ0 = 0 and τj − τj−1 =: ηj and
(ηj)j = 1, 2, . . . are IID variables taking values in {1, 2, . . . ,∞} = N ∪ {∞}. We set
K(n) := P(η1 = n) so in general

∑
n∈NK(n) ≤ 1, while

∑
n∈NK(n) + K(∞) = 1.

We can view τ as a random subset of N∪{∞}. In fact either K(∞) = 0 and |τ | =∞
a.s. or K(∞) > 0 and τ is a.s. a finite set (containing ∞). We set

u(n) := P(n ∈ τ) = P (∃j such that τj = n) , (6)

and u(·) is called renewal function. We say that τ is aperiodic if there exists no
integer p > 1 such that {n ∈ N : K(n) > 0} ⊂ pN. We write η for η1

Theorem 3.1 (Renewal Theorem). For an aperiodic renewal

lim
n→∞

u(n) =
1

E[η]
. (7)

Of course the right-hand side of (0.7) is zero if E[η1] = ∞ and the statement
holds without aperiodicity condition in this case. The proof is a direct application
(Exercise) of the Ergodic Theorem for MC to one of the two MC’s that we are going
to build (and study) now.
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3.1. The backward recurrence time. We set An := n − sup(τ ∩ [0, n]) ∈
E := N ∪ {0}. Looking from time n, this is the time elapsed since the last renewal.

Proposition 3.2. A is a Q-MC with

Q(j, j + 1) = P(η > j + 1|η > j) and Q(j, 0) = 1− P(η > j + 1|η > j) ,

for j = 0, 1, . . . with the convention that P(η > j+ 1|η > j) = 0 if P(η > j) = 0.
Various facts:

• A is transient if and only if P(η =∞) > 0;
• A is positive recurrent if and only if E[η] <∞;
• A is aperiodic if and only if τ is;
• the unique (up to a factor) invariant measure µ satisfies

µ(n) = µ(0)P(η > n) ;

• A has no invariant measure if (and only if) it is transient;
• A is positive recurrent if and only if E[η] <∞ and we remark, once µ

is normalized, that µ(0) = 1/E[η].

Proof: Exercise.

3.2. The forward recurrence time. We set Bn = inf(τ ∩ [n,∞])− n ∈ E =
N∪{0,∞}. Looking from time n, this is the time that is missing till the next renewal
(unless at time n there is a renewal, so the next renewal is considered to be the one
at n and Bn = 0).

Proposition 3.3. B is a Q-MC on E with

Q(j, j − 1) = 1 for j ∈ N and Q(0, j) = P(η = j + 1) for j ∈ N ∪ {0,∞} ,
and Q(∞,∞) = 1. B is not irreducible: it is impossible to go from ∞ to
n = 0, 1, . . .. Various facts:

• E\{∞} is transient (in the obvious sense) if and only if P(η =∞) > 0;
• E \ {∞} is positive recurrent if and only if E[η] <∞;
• B is aperiodic if and only if τ is;
• the unique (up to a factor) invariant measure µ supported on E \ {∞}

satisfies

µ(n) = µ(0)P(η > n) for every n ∈ E \ {∞} ;

• B has δ∞ as unique invariant measure if (and only if) E \ {∞} is
transient;
• Assume B0 6= ∞ a.s.. Then B is positive recurrent if and only if
E[η] <∞ and we remark, once µ is normalized, that µ(0) = 1/E[η].

Proof: Exercise.
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4. Lindley process

The Lindley process is the MC on E = [0,∞) (E := B(E)) defined by the
iteration map fξ(x) := (x+ ξ)+, x ≥ 0 and ξ ∈ R. That means that, given W0 ∈ E
and an IID sequence (ξj)j=1,2,..., with W0 and (ξj)j=1,2,... independent, we define for
n ∈ N

Wn := fξn(Wn−1) . (8)

Hence (Wn) is a p−MC with p(x, [0, y]) = P(ξ1 ≤ y−x). In particular, p(x, {0}) =
P(ξ1 ≤ −x). This process has immediate interpretations in terms of a storage
processes, of basic queueing systems and of random walks with one barrier [1, Ch.
III, Sec. 6]. In order to avoid trivialities, we assume that P(ξ1 < 0) > 0 as well as
P(ξ1 > 0) > 0.

There is an interesting direct link between the Lindley process with W0 = 0
and the random walk (Sn) with S0 = 0 and increments (ξj)j=1,2,.... In fact, it

is straightforward to see that the hitting times (T
(j)
0 )j=0,1,... of 0 by (Wn) are the

descending ladder times of (Sn): the descending ladder times are defined by setting
τ0 = 0 and, for k ≥ 0, τk+1 := inf{n > τk : Sn ≤ Sτk}. So the ladder times are
the times in which the walk hits a new minimum. The identity we just claimed is

actually pathwise: that is T
(j)
0 (ω) = τj(ω) for every ω.

Since it is immediate to check that 0 is accessible for every x ∈ E, i.e. Px(T0 <
∞) > 0, showing recurrence or transience of 0 is crucial. One can actually show
that (Sn) has only three possible behaviors [1, p. 224, Th. 2.4]:

(1) either Sn →∞ a.s.;
(2) or Sn → −∞ a.s.;
(3) or lim supn Sn = +∞ and lim infn Sn = −∞ a.s.;

and P(τ1 <∞) = 1 if and only if we are in cases (2) or (3). Therefore ((2) or (3)) is
a necessary and sufficient condition for recurrence of the Lindley process. One can
actually show that (Wn) is null recurrent if and only if (Sn) is in case (3), and this
happens if and only if ξ ∈ L1 and Eξ1 = 0 or ξ ∼ −ξ.

These results are rather advanced, but it is for example immediate to see that
Wn ≥ Sn, hence Wn →∞ if Sn →∞ (in fact: Wn ∼ Sn because Sn differs from Wn

only because of what happens up to an a.s. finite time). Therefore, this happens
in particular if ξ ∈ L1 and E[ξ1] > 0 and in this case one obtains without difficulty
also that Wn/n→ E[ξ1] a.s.. Therefore (Wn) is transient for E[ξ1] > 0 (in the sense
that 0 is visited only a finite number of times, but of course this result says that
also [0, x] is visited only finitely many times).

Another case that we can treat in detail with relatively elementary methods is
the case in which Sn → −∞, hence in particular if ξ ∈ L1 and E[ξ1] < 0. In
analyzing this case the following magic identity (that involves no probability!) will
the of help:
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Lemma 4.1. If ξ1, ξ2, . . . are real numbers, then for every n = 1, 2, . . . and
x ≥ 0 we have

fξ1 ◦ fξ2 ◦ . . . ◦ fξ2(x) =

max (0, ξ1, ξ1 + ξ2, . . . , ξ1 + . . .+ ξn−1, ξ1 + . . .+ ξn−1 + ξn + x) . (9)

Proof. Of course it suffices to consider the case x = 0. We can proceed by
induction: the case n = 1 follows from the definition of fξ(·). To prove the induction
step it suffices to exploit that (x+y+)+ = max(0, x, x+y) (this identity is established
by considering separately the cases y ≥ 0 and y < 0). �

The consequences of Lemma 4.1 are immediate: if limn ξ1 + ξ2 + . . . ξn = −∞ we
have that for every x

lim
n
fξ1 ◦ fξ2 ◦ . . . ◦ fξ2(x) = max (0, ξ1, ξ1 + ξ2, ξ1 + ξ2 + ξ3, . . .) ∈ [0,∞). (10)

This is still just a deterministic result, but of course if (ξj) are IID and Sn → −∞
a.s. we have that, with Yn := fξ1 ◦fξ2 ◦ . . .◦fξ2(x), limn Yn converges almost surely to
a limit that we call Y∞ (see the right-hand side of (0.10) for an explicit expression).

Note however that we are not interested in (Yn), but in (Wn)! This is not a
minor change:

• (Yn) is not (at all) a MC and it the trajectories of (Yn) have very little to
do with those of (Wn). In fact, Lemma 4.1 is telling us that it is a non
decreasing process (while (Wn) oscillates a lot!).
• nevertheless Yn ∼ Wn for every n, just because the ξj variables are ex-

changeable. We stress that this holds only for the 1-marginal: we do not
claim (at all) for example that (Y1, Y2) ∼ (W1,W2).

From these considerations we can extract

Proposition 4.2. If Sn → −∞ a.s., in particular if E[(ξ1)+] < ∞ and
E[ξ1] ∈ [−∞, 0), we have that (Wn) converges in law, for every choice of W0 = x,
to W∞. The law of W∞ is the unique invariant probability of the Markov chain
and P(W∞ = 0) ∈ (0, 1).

Proof. Exercise �

Proposition 4.2 collects the results that one obtains directly from Lemma 4.1
and the trick of inversing the order of the ξ variables. But once we know that there
is an invariant probability for which 0 has positive probability, we can extract that
0 is recurrent and exploit this to obtain (Exercise)

Proposition 4.3. If Sn → −∞ a.s. we have that the law of Wn converges
in total variation, for every choice of W0 = x, to the law of W∞.
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Note that if there exists a > 0 such that P(Sn ∈ aZ for every Z) (for this we need
that x ∈ aZ, but even if x is not in this lattice, the process will reach it the first
time it hits 0), the the Lindley MC lives on aN ∪ {0} (and, of course, our analysis
applies also to this case).

the Lindley process lives on a lattice if this latti

5. Random Coefficient Autoregressive MC

The basic Random Coefficient Autoregressive (RCA) MC is defined iteratively,
once the initial condition X0 = x ∈ R is given, by

Xn+1 = An+1Xn +Bn =: fAn+1,Bn(Xn) , (11)

with ((An, Bn))n∈N and IID sequence of random variables taking values in R2. Note
that in this case

|fA,B(x)− fA,B(y)| ≤ |A| |x− y| , (12)

so this process has good contractive properties if log |A| ∈ L1 and E log |A| < 0.
In order to make this clear and explicit let us consider the particular case in which
Bn = An for every n, so

Xn+1 = An+1 (1 +Xn) =: fAn+1(Xn) , (13)

and let us simplify things a bit by choosing the A variables non negative and non
trivial (recall that we assume logA ∈ L1 and E logA < 0). In this case it is not
difficult to see that if x < 0, the stopping time inf{n : Xn ≥} is a.s. finite, so the
negative semi-axis is transient, but we will work in any case with E = R and what
we just claimed will come out of the analysis we will develop.

By direct inspection it is not difficult to see that

Xn = fAn ◦ . . . ◦ fA1(x) =

An + AnAn−1 + AnAn−1An−2 + . . .+ AnAn−1 · · ·A2 + AnAn−1 · · ·A1(1 + x) . (14)

If we reverse the engine of this MC we obtain

Yn := fA1 ◦ . . . ◦ fAn(x) =

A1 + A1A2 + A1A2A3 + . . .+ A1A2 · · ·An−1 + A1A2 · · ·An(1 + x) , (15)

which is an increasing process if x ≥ 0. But even if x < 0, it is not difficult to see
that limn Yn := Y∞

Y∞ :=
∞∑
n=1

n∏
j=1

Aj , (16)

exists and it is a.s. finite. In fact, by the law of large numbers (1/n) logA1A2 · · ·An −→
E logA < 0, so for every β ∈ (exp(E logA), 1) there exists C(ω) (C is an a.s. finite
random variable) such that for every n ∈ N

A1(ω)A2(ω) · · ·An(ω) ≤ C(ω)βn . (17)

This suffices to show that (Yn(ω)) is a.s. a Cauchy sequence and therefore the limit
limn Yn =: Y∞ exists a.s.. Note that (0.17) yields also that the limit is independent
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of the value of x. Note moreover that Y∞ is supported on [0,∞). And now by
exploiting that Xn ∼ Yn for every n we can complete (Exercise) the proof of

Proposition 5.1. The random coefficient autoregressive process defines by
(0.13) has a unique invariant probability ν and for every initial condition x ∈ R
we have (Xn) converges in law to Y∞.

This result can be easily generalized almost (verbatim) to the case in which
B = B1 is random with E[(log |B|)+] < ∞ and to the case in which the A and B
variables assume also negative values. Of course the invariant probability will no
longer be supported on the positive semi-axis.

Remark 5.2. The invariant probability is more interesting than it looks at first.
Note, for example, that even if A(= B) ≥ 0 is a bounded random variable, Y∞ may
not even be in L1. In fact

E[Y∞] =
∞∑
n=1

(E[A])n , (18)

so E[Y∞] < ∞ if and only if E[A] < 1. With some work (but not too much) it is
also possible to see that an analogous result holds for all moments: E[Y k

∞] < ∞ if
and only if E[Ak] < 1. Therefore Y∞ has a heavy tail unless E[Ak] < 1 for every k,
which requires P(A < 1) = 1 (i.e., that the process is contractive for every ω, not
just in a probabilistic sense).

Sticking for simplicity to the case (0.13), let us address the question of whether
this process if a Harris MC. This requires conditions on law of A. We will not try
to look for optimal conditions and we start by observing that if A is a continuous
random variable – we denote by f its density – then measure p(x, ·), p is the transi-
tion kernel, has density y 7→ f(y/(1+x))/(1+x). In particular for x = 1 the map is
y 7→ f(y/2)/2 Therefore if f(1/2) > 0, by continuity we can find ε0 > 0 and δ > 0
such that f(y/(1 + x))/(1 + x) ≥ ε0 uniformly in x, y ∈ [1− δ, 1 + δ]. Therefore we
can choose A = B = [1 − δ, 1 + δ], ρ the uniform mesure on B, and ε = 2δε0 and
satisfy the second of the Harris requirement.

But also the first Harris requirement is fulfilled. In fact it suffices to show that
for every x ∈ R we can find a value of n and a1, . . . , an ∈ Iη := (−η + 1/2, η + 1/2)
(we are choosing η so that infIη f > 0) we have that

an + anan−1 + . . .+ . . .+ anan−1 · · · a2 + anan−1 · · · a1(1 + x) ∈ (1− δ, 1 + δ) . (19)

Once this is established, the result is obtained because (0.19) holds also in an open
neighborhood of (a1, . . . , an). The requirement (0.19) may appear difficult to es-
tablish, but it is not the case. In fact, it suffices to remark that if x < 1 then
x < (1 + x)/2 < 1, so even by choosing simply aj = 1/2 for every j we will hit
the target (of becoming larger than 1 − δ) in a finite number of steps. Analogous
reasoning for x > 1.

As a matter of fact, the argument we just developed shows that the chain is
Harris with A = B = [1 − δ, 1 + δ] and suitable choice of ε (ρ is the uniform
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probability on B) under the assumption that the law of A is bounded below by a
measure with a density f that is continuous and f(1/2) > 0.

Remark 5.3. A similar argument can be developed if f(x) > 0 for x ∈ (1/2, 1].

Remark 5.4. Another interesting point is to notice that the minimum of the
support of the invariant probability can be determined with precision: if we call a,
a < 1 by hypothesis, the minimum of the support of the law of A, then by iterating
from x = 0 we see that the support of the invariant probability does not go below
a+ a2 + . . . = a/(1− a). Just a slightly more involved argument gives the bound in
the other direction. On the other hand the supremum of the support of the invariant
probability is +∞, since we are assuming that the maximum of the support of A is
larger than one.

In the cases in which we are able to prove that the MC is Harris, we can apply
the general theory and conclude that , under the assumption that E[logA] < 0, the
only invariant measure is the invariant probability and that pn(x, ·) converges to
the invariant probability in total variation distance for every x such that Px(TA <
∞) = 1. But we know by the weak convergence result (obtained by exploiting the
convergence in law result in Proposition 5.1) that limn Ex[h(Xn)] =

∫
h dν for every

x (ν is the invariant probability). By choosing h to be a smoothed version of 1A we
see that the chain that starts from x visits A a.s., that is Px(TA <∞) = 1 for every
x.

6. A Foster-Lyapunov argument for (null) recurrence, with applications

Roughly, we would like to say that if we can find V bounded below such that
limx: |x|→∞ V (x) = ∞ and such that pV ≤ V outside of a compact set, then the
p-MC is recurrent. In order to minimize introducing definitions, we give a minimal
version of this result that is tailored to the two applications we give.

Proposition 6.1. Let us consider E = [l,∞), l ∈ R, and a p-MC on this
space. We assume that there exists V : E → [0,∞) which outside of a bounded
set satisfies two properties:

(1) V is (strictly) increasing and limx→∞ V (x) =∞;
(2) pV ≤ V .

We also assume that for every x outside of a bounded set there exists ε > 0 such
that infy∈Bε(x) Py(TBε(x){ <∞) > 0 with Bε(x) := {z : |z − x| < ε}. Then there

exists r > l such that for every x ∈ E we have Px(T[l,r] <∞) = 1.

The condition on Py(TBε(x){ <∞) > 0 is a very weak requirement (see applica-

tions) in order to avoid that the process gets stuck at some x for arbitrarily large
x.

The proof is given as a guided exercise.
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Proof. First of all note (Exercise) that the hypothesis involving Bε(x) implies
that Px(

∑
n 1Bε(x){(Xn) = ∞) = 1. Moreover, we can choose r > l such that the

hypotheses hold for x ≥ r. We set for conciseness T = T[l,r] (the hitting time of
[l, r]) and we introduce Yn := V (Xn∧T ) for n = 0, 1, . . .. The process (Yn)n=0,1,... is
a super-martingale for every choice of Y0 = x ∈ E (Exercise: note that by iterating
pV ≤ V + b1[l,r], that holds by hypothesis for a positive b, we obtain Yn ∈ L1 for
every n). Since Yn ≥ 0 we have that (Yn(ω)) converges to a limit that we call
Y∞(ω) <∞ for every ω ∈ G, with Px(G) = 1.

If there exists x such that Px(T[l,r] = ∞) > 0 then for ω ∈ {T[l,r] = ∞} ∩ G we
have that Xn(ω) > r for every n and therefore Yn(ω) = V (Xn(ω)) −→ Y∞(ω) <∞.
Since V diverges at infinity and since it is a bijection on the region we consider, we
obtain that (Xn(ω)) converges to a limit in X∞(ω) ∈ [r,∞). But this means that
Xn(ω) ∈ Bε(X∞(ω)) for every ε > 0 and all n large and this is incompatible with
our hypothesis on the exit probability. Therefore Px(T[l,r] =∞) = 0 for every x. �

Application to the Lindley MC with centered drift. We consider the Lindley MC
with E[ξ] = 0 (we recall that we exclude the trivial case of ξ ≡ 0). We treat only
the case in which there exists L such that P(ξ < −L) = 0. This is an assumption
that simplifies (a lot!) the analysis: it is possible to generalize this result at least to
the case in which the variance of ξ is finite (with the very same choice of V ). We
choose V (x) = log(1+x), x ∈ [0,∞) = E. We remark that the following elementary
bound holds: for y > −1

log(1 + y) ≤ y − 1

2
y21y<0 . (20)

Then

pV (x) = E [log (1 + (x+ ξ)+)] = V (x) + E
[
log

(
1 +

(x+ ξ)+ − x
1 + x

)]
. (21)

If x > L then a.s. (x+ ξ)+ = x. Therefore for x > L

pV (x)− V (x) = E
[
log

(
1 +

ξ

1 + x

)]
≤ − 1

2(1 + x)2
E[ξ2; ξ < 0] . (22)

Therefore pV (x) < V (x) for every x > L. Finally, in this case and outside [0, L], the
evolution is just a random walk and since ξ is centered and nontrivial, we have that
p(y,By(2ε)

{) = P(ξ ∈ B0(2ε)
{) =: pε > 0 for y > L and ε > 0, so p(y,Bx(ε)) ≥ pε

for every y ∈ Bx(ε) and x > L+ ε. Therefore we can apply Proposition 6.1 and the
set [0, L+ ε] is visited infinitely often by the MC. From this one easily extracts that
also 0 is visited infinitely often (so 0, and the whole MC since 0 is accessible from
every x, is recurrent).

Application to the RCA MC with E[logA] = 0. Also in this case we simplify our
life by making a strong assumption on the support of logA: there exists L such that
P(logA > −L) = 1.

The first step is to work with Zn := logXn:

Zn+1 = logAn+1 + log (1 + exp(Zn)) = logAn+1 +Zn + log (1 + exp(−Zn)) , (23)
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which makes clear that Z behaves almost as a random walk when it is positive and
far from the origin. On the other hand, Z has a lot of difficulty to enter the negative
semi axis. In fact, since ξ ≥ −L, if Z0 < −L then Z1 ≥ −L and Zn ∈ [−L,∞) for
every n ≥ 1. So we can choose E = [−L,∞).

We then choose V (x) = log+(x) for x > 0 and V (x) = 0 for x ∈ [−L, 0]. Since
ξ ≥ −L for x ≥ L+ 1

pV (z) = log z + E
[
log

(
1 +

logA

z
+

log(1 + exp(−z))

z

)]
, (24)

so by (0.20)

pV (z) = V (z) +
log(1 + exp(−z))

z
−

1

2z2
E
[
(logA+ log(1 + exp(−z)))2 ; logA+ log(1 + exp(−z)) < 0

]
z→∞
= V (z) +O

(
exp(−z)

z

)
− 1

2z2
(
E
[
(logA)2 ; logA < 0

]
+ o(1)

)
. (25)

Therefore there exists M > L + 1 such that pV (z) ≤ V (z) for every z ≥ M . The
argument to show that Z cannot visit infinitely many times a neighborhood of a point
goes pretty much as for the Lindley case. Therefore we can apply Proposition 6.1
and conclude that [−L,M ] is a.s. visited by Z and therefore [exp(−L], exp(M)] is
a.s. visited by the RCA MC X.
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