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1. Branching process (Bienaymé-Galton-Watson process)

The BGW process (Zn) is a MC on E := N ∪ {0} defined starting from the IID
family ξ := (ξn,j)(n,j)∈N2 , with P(ξ1,1 ∈ E) = 1. We use the notation pj := P(ξ1,1 =
j). The chain can be introduced by iteration once Z0 independent of ξ is given
(unless otherwise said, we choose Z0 = 1) via

Zn+1 =

{
ξn+1,1 + ξn+1,2 + . . .+ ξn+1,Zn if Zn > 0,

0 if Zn = 0.
(0.1)

We assume hat µ = E[ξ1,1] =
∑

j jpi = µ ∈ (0,∞) and that p1 < 1 (to avoid

trivialities).

It is useful to establish that (Zn/µ
n) is a (non-negative) martingale with respect

to the natural filtration of the MC (Exercise). Hence limn Zn/µ
n exists a.s. and we

denote the limit (non-negative) random variable by H. Check that if E[ξ21,1] < ∞
then the martingale is UI (Uniformly Integrable), hence in this case H 6=≡ 0. For
s ∈ (0, 1] we introduce also ϕ(s) = E[sξ1,1 ]. Note that (Exercise) ϕ(·) is convex,
increasing and smooth. Since ϕ(0) = lims↘0 ϕ(s) = p0 and ϕ(1) = 1, there exists
only one solution in [0, 1) to the the fixed point equation s = ϕ(s). Call this solution
%

Proposition 1.1. 0 is a recurrent state for the chain (Zn): note that 0 is
accessible from any other state (i.e., ρn,0 > 0) if and only if p0 > 0. All other
states n are transient. Moreover

(1) if µ ≤ 1 then
∑

n 1Zn>0 <∞ a.s. (hence H ≡ 0);
(2) if µ > 1 then P(H = 0) = ρ, hence 1H=0

∑
n 1Zn>0 < ∞ a.s., and if

E[ξ21,1] < ∞ on the event {H > 0} we have Zn ∼ Hµn a.s. (here ∼ is
aymptotic equivalence.

The only (σ-finite) invariant measure can be normalized and it is δ0.

Proof: Exercise.

2. Birth and death chain

E = N ∪ {0} and Q is defined by

Q(j, j + 1) = pj , Q(j, j − 1) = qj , Q(j, j) = rj, (0.2)

with pj + qj + rj = 1 for every j. We assume that pj > 0 for every j ∈ E, qj > 0 for
every j ∈ E \ {0} and q0 = 0.

This MC is irreducible, moreover it is aperiodic if and only if there exists j such
that rj > 0 (Exercise).

We introduce the function ϕ : E 7→ [0,∞) defined by ϕ(0) = 0, ϕ(1) = 1 and by
imposing that

(Qϕ)(k) = ϕ(k) , (0.3)
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for k ∈ N. This yields (ϕ(k + 1)− ϕ(k)) = (qk/pk)(ϕ(k)− ϕ(k − 1)) for k ≥ 1 and
therefore for n ≥ 2

ϕ(n) = 1 +
n−1∑
m=1

m∏
j=1

qj
pj
. (0.4)

Note that limn→∞ ϕ(n) =: ϕ(∞) exists and takes value in (1,∞]. We set Ta :=
inf{n = 0, 1, . . . : Xn = a}. By the Optional Stopping Theorem we have that, for
a < x < b, ϕ(x) = Ex[ϕ(XTa∧Tb ] from which we readily extract

Px(Tb > Ta) =
ϕ(x)− ϕ(a)

ϕ(b)− ϕ(a)
=⇒ Px(Tb > T0) =

ϕ(x)

ϕ(b)
. (0.5)

Note finally that ν(x) :=
∏x

k=1(pk−1/qk) is reversible for Q.

We can therefore conclude that (Exercise):

Proposition 2.1. The birth and death MC is recurrent if and only if ϕ(∞) =
∞. In this case ν is unique up to a multiplicative factor. Moreover it is finite
recurrent if and only if

∑
x

∏x
k=1(pk−1/qk) <∞.

Note that this result implies in particular that the symmetric simple random
walk is null recurrent, as well as the well known fact that an asymmetric simple
random walk is transient.

3. Discrete renewal processes

The basic object is τ = {τj}j=0,1,... with τ0 = 0 and τj − τj−1 =: ηj and
(ηj)j = 1, 2, . . . are IID variables taking values in {1, 2, . . . ,∞} = N ∪ {∞}. We set
K(n) := P(η1 = n) so in general

∑
n∈NK(n) ≤ 1, while

∑
n∈NK(n) + K(∞) = 1.

We can view τ as a random subset of N∪{∞}. In fact either K(∞) = 0 and |τ | =∞
a.s. or K(∞) > 0 and τ is a.s. a finite set (containing ∞). We set

u(n) := P(n ∈ τ) = P (∃j such that τj = n) , (0.6)

and u(·) is called renewal function. We say that τ is aperiodic if there exists no
integer p > 1 such that {n ∈ N : K(n) > 0} ⊂ pN. We write η for η1

Theorem 3.1 (Renewal Theorem). For an aperiodic renewal

lim
n→∞

u(n) =
1

E[η]
. (0.7)

Of course the right-hand side of (0.7) is zero if E[η1] = ∞ and the statement
holds without aperiodicity condition in this case. The proof is a direct application
(Exercise) of the Ergodic Theorem for MC to one of the two MC’s that we are going
to build (and study) now.
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3.1. The backward recurrence time. We set An := n − sup(τ ∩ [0, n]) ∈
E := N ∪ {0}. Looking from time n, this is the time elapsed since the last renewal.

Proposition 3.2. A is a Q-MC with

Q(j, j + 1) = P(η > j + 1|η > j) and Q(j, 0) = 1− P(η > j + 1|η > j) ,

for j = 0, 1, . . . with the convention that P(η > j+ 1|η > j) = 0 if P(η > j) = 0.
Various facts:

• A is transient if and only if P(η =∞) > 0;
• A is positive recurrent if and only if E[η] <∞;
• A is aperiodic if and only if τ is;
• the unique (up to a factor) invariant measure µ satisfies

µ(n) = µ(0)P(η > n) ;

• A has no invariant measure if (and only if) it is transient;
• A is positive recurrent if and only if E[η] <∞ and we remark, once µ

is normalized, that µ(0) = 1/E[η].

Proof: Exercise.

3.2. The forward recurrence time. We set Bn = inf(τ ∩ [n,∞])− n ∈ E =
N∪{0,∞}. Looking from time n, this is the time that is missing till the next renewal
(unless at time n there is a renewal, so the next renewal is considered to be the one
at n and Bn = 0).

Proposition 3.3. B is a Q-MC on E with

Q(j, j − 1) = 1 for j ∈ N and Q(0, j) = P(η = j + 1) for j ∈ N ∪ {0,∞} ,
and Q(∞,∞) = 1. B is not irreducible: it is impossible to go from ∞ to
n = 0, 1, . . .. Various facts:

• E\{∞} is transient (in the obvious sense) if and only if P(η =∞) > 0;
• E \ {∞} is positive recurrent if and only if E[η] <∞;
• B is aperiodic if and only if τ is;
• the unique (up to a factor) invariant measure µ supported on E \ {∞}

satisfies

µ(n) = µ(0)P(η > n) for every n ∈ E \ {∞} ;

• B has δ∞ as unique invariant measure if (and only if) E \ {∞} is
transient;
• Assume B0 6= ∞ a.s.. Then B is positive recurrent if and only if
E[η] <∞ and we remark, once µ is normalized, that µ(0) = 1/E[η].

Proof: Exercise.
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4. Lindley process

The Lindley process is the MC on E = [0,∞) (E := B(E)) defined by the
iteration map fξ(x) := (x+ ξ)+, x ≥ 0 and ξ ∈ R. That means that, given W0 ∈ E
and an IID sequence (ξj)j=1,2,..., with W0 and (ξj)j=1,2,... independent, we define for
n inN

Wn := fξn(Wn−1) . (0.8)

Hence (Wn) is a p−MC with p(x, [0, y]) = P(ξ1 ≤ y−x). In particular, p(x, {0}) =
P(ξ1 ≤ −x). This process has immediate interpretations in terms of a storage pro-
cesses or of basic queueing systems [1, Ch. III, Sec. 6]. In order to avoid trivialities,
we assume that P(ξ1 < 0) > 0 as well as P(ξ1 > 0) > 0.

There is an interesting direct link between the Lindley process with W0 = 0
and the random walk (Sn) with S0 = 0 and increments (ξj)j=1,2,.... In fact, it

is straightforward to see that the hitting times (T
(j)
0 )j=0,1,... of 0 by (Wn) are the

descending ladder times of (Sn): the descending ladder tiles are defined by setting
τ0 = 0 and, for k ≥ 0, τk+1 := inf{n > τk : Sn ≤ Sτk}. So the ladder times are
the times in which the walk hits a new minimum. The identity we just claimed is

actually pathwise: that is T
(j)
0 (ω) = τj(ω) for every ω.

Since it is immediate to check that 0 is accessible for every x ∈ E, i.e. Px(T0 <
∞) > 0, showing recurrence or transience of 0 is crucial. One can actually show
that (Sn) has only three possible behaviors [1, p. 224, Th. 2.4]:

(1) either Sn →∞ a.s.;
(2) or Sn → −∞ a.s.;
(3) or lim supn Sn = +∞ and lim infn Sn = −∞ a.s.;

and P(τ1 < ∞) = 1 if and only if we are in cases (2) or (3). Therefore this is a
necessary and sufficient condition for recurrence of the Lindley process. One can
actually show that (Wn) is null recurrent if and only if (Sn) is in case (3), and this
happens if and only if ξ ∈ L1 and Eξ1 = 0 or ξ ∼ −ξ.

These results are rather advanced, but it is for example immediate to see that
Wn ≥ Sn, hence Wn →∞ if Sn →∞. Therefore, this happens in particular if ξ ∈ L1

and E[ξ1] > 0 and in this case one obtains without difficulty also that Wn/n→ E[ξ1]
a.s.. Therefore (Wn) is transient for E[ξ1] > 0 (in the sense that 0 is visited only a
finite number of times, but of course this result says that also [0, x] is visited only
finitely many times).

Another case that we can treat in detail with relatively elementary methods is
the case in which Sn → −∞, hence in particular if ξ ∈ L1 and E[ξ1] < 0. In
analyzing this case the following magic identity (that involves no probability!) will
the of help:
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Lemma 4.1. If ξ1, ξ2, . . . are real numbers, then for every n = 1, 2, . . . and
x ≥ 0 we have

fξ1 ◦ fξ2 ◦ . . . ◦ fξ2(x) =

max (0, ξ1, ξ1 + ξ2, . . . , ξ1 + . . .+ ξn−1, ξ1 + . . .+ ξn−1 + ξn + x) . (0.9)

Proof. Of course it suffices to consider the case x = 0. We can proceed by
induction: the case n = 1 follows from the definition of fξ(·). To prove the induction
step it suffices to exploit that (x+y+)+ = max(0, x, x+y) (this identity is established
by considering separately the cases y ≥ 0 and y < 0). �

The consequences of Lemma 4.1 are immediate: if limn ξ1 + ξ2 + . . . ξn = −∞ we
have that for every x

lim
n
fξ1 ◦ fξ2 ◦ . . . ◦ fξ2(x) = max (0, ξ1, ξ1 + ξ2, ξ1 + ξ2 + ξ3, . . .) ∈ [0,∞). (0.10)

This is still just a deterministic result, but of course (ξj) are IID and Sn → −∞ a.s.
we have that, with Yn := fξ1 ◦ fξ2 ◦ . . . ◦ fξ2(x), limn Yn converges almost surely to a
limit that we call Y∞ (see the right-hand side of (0.10) for an explicit expression).

Note however that we are not interested in (Yn), but in (Wn)! This is not a
minor change:

• (Yn) is not (at all) a MC and it the trajectories of (Yn) have very little to
do with those of (Wn). In fact, Lemma 4.1 is telling us that it is a non
decreasing process (while (Wn) oscillates a lot!).
• nevertheless Yn ∼ Wn for every n, just because the ξj variables are ex-

changeable. We stress that this holds only for the 1-marginal: we do not
claim at all for example that (Y1, Y2) ∼ (W1,W2).

From these considerations we can extract

Proposition 4.2. If Sn → −∞ a.s., in particular if E[(ξ1)+] < ∞ and
E[ξ1] ∈ [−∞, 0), we have that (Wn) converges in law, for every choice of W0 = x,
to W∞. The law of W∞ is the unique invariant probability of the Markov chain
and P(W∞ = 0) ∈ (0, 1).

Proof. Exercise �

Proposition 4.2 collects the results that one obtains directly from Lemma 4.1
and the trick of inversing the order of the ξ variables. But once we know that there
is an invariant probability for which 0 has positive probability, we can extract that
0 is recurrent and exploit this to obtain (Exercise)

Proposition 4.3. If Sn → −∞ a.s. we have that the law of Wn converges
in total variation, for every choice of W0 = x, to the law of W∞.





Bibliography

[1] S. Asmussen, Applied probability and queues, Second edition, Springer-Verlag, New York, 2003.
[2] J.-F. Le Gall, Intgration, Probabilits er Processus Alatoires, google the title, otherwise

https://www.math.u-psud.fr/ jflegall/IPPA2.pdf
[3] D. Williams, Probability with Martingales, Cambridge Mathematical textbooks, Cambridge

University Press, 1991.

9


