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1. Branching process (Bienaymé-Galton-Watson process)

The BGW process (Zn) is a MC on E := N ∪ {0} defined starting from the IID
family ξ := (ξn,j)(n,j)∈N2 , with P(ξ1,1 ∈ E) = 1. We use the notation pj := P(ξ1,1 =
j). The chain can be introduced by iteration once Z0 independent of ξ is given
(unless otherwise said, we choose Z0 = 1) via

Zn+1 =

{
ξn+1,1 + ξn+1,2 + . . .+ ξn+1,Zn if Zn > 0,

0 if Zn = 0.
(0.1)

We assume hat µ = E[ξ1,1] =
∑

j jpi = µ ∈ (0,∞) and that p1 < 1 (to avoid

trivialities).

It is useful to establish that (Zn/µ
n) is a (non-negative) martingale with respect

to the natural filtration of the MC (Exercise). Hence limn Zn/µ
n exists a.s. and we

denote the limit (non-negative) random variable by H. Check that if E[ξ21,1] < ∞
then the martingale is UI (Uniformly Integrable), hence in this case H 6=≡ 0. For
s ∈ (0, 1] we introduce also ϕ(s) = E[sξ1,1 ]. Note that (Exercise) ϕ(·) is convex,
increasing and smooth. Since ϕ(0) = lims↘0 ϕ(s) = p0 and ϕ(1) = 1, there exists
only one solution in [0, 1) to the the fixed point equation s = ϕ(s). Call this solution
%

Proposition 1.1. 0 is a recurrent state for the chain (Zn): note that 0 is
accessible from any other state (i.e., ρn,0 > 0) if and only if p0 > 0. All other
states n are transient. Moreover

(1) if µ ≤ 1 then
∑

n 1Zn>0 <∞ a.s. (hence H ≡ 0);
(2) if µ > 1 then P(H = 0) = ρ, hence 1H=0

∑
n 1Zn>0 < ∞ a.s., and if

E[ξ21,1] < ∞ on the event {H > 0} we have Zn ∼ Hµn a.s. (here ∼ is
aymptotic equivalence.

The only (σ-finite) invariant measure can be normalized and it is δ0.

Proof: Exercise.

2. Birth and death chain

E = N ∪ {0} and Q is defined by

Q(j, j + 1) = pj , Q(j, j − 1) = qj , Q(j, j) = rj, (0.2)

with pj + qj + rj = 1 for every j. We assume that pj > 0 for every j ∈ E, qj > 0 for
every j ∈ E \ {0} and q0 = 0.

This MC is irreducible, moreover it is aperiodic if and only if there exists j such
that rj > 0 (Exercise).

We introduce the function ϕ : E 7→ [0,∞) defined by ϕ(0) = 0, ϕ(1) = 1 and by
imposing that

(Qϕ)(k) = ϕ(k) , (0.3)
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for k ∈ N. This yields (ϕ(k + 1)− ϕ(k)) = (qk/pk)(ϕ(k)− ϕ(k − 1)) for k ≥ 1 and
therefore for n ≥ 2

ϕ(n) = 1 +
n−1∑
m=1

m∏
j=1

qj
pj
. (0.4)

Note that limn→∞ ϕ(n) =: ϕ(∞) exists and takes value in (1,∞]. We set Ta :=
inf{n = 0, 1, . . . : Xn = a}. By the Optional Stopping Theorem we have that, for
a < x < b, ϕ(x) = Ex[ϕ(XTa∧Tb ] from which we readily extract

Px(Tb > Ta) =
ϕ(x)− ϕ(a)

ϕ(b)− ϕ(a)
=⇒ Px(Tb > T0) =

ϕ(x)

ϕ(b)
. (0.5)

Note finally that ν(x) :=
∏x

k=1(pk−1/qk) is reversible for Q.

We can therefore conclude that (Exercise):

Proposition 2.1. The birth and death MC is recurrent if and only if ϕ(∞) <
∞. In this case ν is unique up to a multiplicative factor. Moreover it is finite
recurrent if and only if

∑
x

∏x
k=1(pk−1/qk) <∞.

Note that this result implies in particular that the symmetric simple random
walk is null recurrent, as well as the well known fact that an asymmetric simple
random walk is transient.

3. Discrete renewal processes

The basic object is τ = {τj}j=0,1,... with τ0 = 0 and τj − τj−1 =: ηj and
(ηj)j = 1, 2, . . . are IID variables taking values in {1, 2, . . . ,∞} = N ∪ {∞}. We set
K(n) := P(η1 = n) so in general

∑
n∈NK(n) ≤ 1, while

∑
n∈NK(n) + K(∞) = 1.

We can view τ as a random subset of N∪{∞}. In fact either K(∞) = 0 and |τ | =∞
a.s. or K(∞) > 0 and τ is a.s. a finite set (containing ∞). We set

u(n) := P(n ∈ τ) = P (∃j such that τj = n) , (0.6)

and u(·) is called renewal function. We say that τ is aperiodic if there exists no
integer p > 1 such that {n ∈ N : K(n) > 0} ⊂ pN. We write η for η1

Theorem 3.1 (Renewal Theorem). For an aperiodic renewal

lim
n→∞

u(n) =
1

E[η]
. (0.7)

Of course the right-hand side of (0.7) is zero if E[η1] = ∞ and the statement
holds without aperiodicity condition in this case. The proof is a direct application
(Exercise) of the Ergodic Theorem for MC to one of the two MC’s that we are going
to build (and study) now.
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3.1. The backward recurrence time. We set An := n − sup(τ ∩ [0, n]) ∈
E := N ∪ {0}. Looking from time n, this is the time elapsed since the last renewal.

Proposition 3.2. A is a Q-MC with

Q(j, j + 1) = P(η > j + 1|η > j) and Q(j, 0) = 1− P(η > j + 1|η > j) ,

for j = 0, 1, . . . with the convention that P(η > j+ 1|η > j) = 0 if P(η > j) = 0.
Various facts:

• A is transient if and only if P(η =∞) > 0;
• A is positive recurrent if and only if E[η] <∞;
• A is aperiodic if and only if τ is;
• the unique (up to a factor) invariant measure µ satisfies

µ(n) = µ(0)P(η > n) ;

• A has no invariant measure if (and only if) it is transient;
• A is positive recurrent if and only if E[η] <∞ and we remark, once µ

is normalized, that µ(0) = 1/E[η].

Proof: Exercise.

3.2. The forward recurrence time. We set Bn = inf(τ ∩ [n,∞])− n ∈ E =
N∪{0,∞}. Looking from time n, this is the time that is missing till the next renewal
(unless at time n there is a renewal, so the next renewal is considered to be the one
at n and Bn = 0).

Proposition 3.3. B is a Q-MC on E with

Q(j, j − 1) = 1 for j ∈ N and Q(0, j) = P(η = j + 1) for j ∈ N ∪ {0,∞} ,
and Q(∞,∞) = 1. B is not irreducible: it is impossible to go from ∞ to
n = 0, 1, . . .. Various facts:

• E\{∞} is transient (in the obvious sense) if and only if P(η =∞) > 0;
• E \ {∞} is positive recurrent if and only if E[η] <∞;
• B is aperiodic if and only if τ is;
• the unique (up to a factor) invariant measure µ supported on E \ {∞}

satisfies

µ(n) = µ(0)P(η > n) for every n ∈ E \ {∞} ;

• B has δ∞ as unique invariant measure if (and only if) E \ {∞} is
transient;
• Assume B0 6= ∞ a.s.. Then B is positive recurrent if and only if
E[η] <∞ and we remark, once µ is normalized, that µ(0) = 1/E[η].

Proof: Exercise.


