Exercice 1.

Soit f la fonction définie sur \mathbb{R} par $f(x)=(-2x+1)e^{2x-3}$.

- 1. a. Rappeler les limites de e^u et de ue^u quand u tend vers $+\infty$.
- b. Rappeler les limites de e^u et de ue^u quand u tend vers $-\infty$.
- c. En déduire les limites de f(x) quand x tend vers $+\infty$ d'une part, quand x tend vers $-\infty$ d'autre part. On pourra poser u=2x-3 et écrire f(x) en fonction de u.
- 2. Calculer f'(x) pour tout nombre réel x.
- 3. Dresser le tableau de variation de la fonction f. On précisera la valeur du maximum de f et pour quelle valeur de x ce maximum est atteint.
- 4. Montrer que l'équation f(x)=-1 admet une unique solution sur $\mathbb R$ notée α . Donner un encadrement de α d'amplitude 0,001.

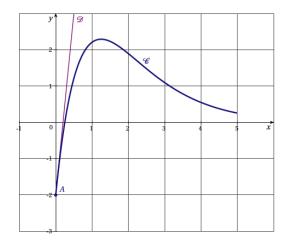
Exercice 2.

Soit f la fonction définie sur \mathbb{R} par $f(x) = (-x^2 + 2, 5x - 2)e^x + 5$.

- 1. Déterminer les limites de f(x) quand x tend vers $+\infty$ d'une part, quand x tend vers $-\infty$ d'autre part. On pourra remarquer que : $(-x^2+2,5x-2)$ $e^x=x^2$ $e^x\left(-1+\frac{2,5}{x}-\frac{2}{x^2}\right)$.
- 2. Calculer f'(x) pour tout nombre réel x.
- 3. Dresser le tableau de variation de la fonction f.
- 4. a. Montrer que l'équation f(x) = 0 admet une unique solution notée α sur l'intervalle [1;2].
- b. Déterminer la valeur de α arrondie au centième.

Exercice 3.

Soit f une fonction définie sur l'intervalle [0;5] dont la courbe représentative $\mathscr C$ est donnée ci-dessous dans un repère orthonormé d'origine O.



Les courbes \mathscr{C} et \mathscr{D} passent toutes les deux par le point A(0;-2).

La droite \mathcal{D} est tangente à la courbe \mathscr{C} au point A et admet pour équation y = 10x - 2.

1. Donner, à l'aide des informations ci-dessus les valeurs de f(0) et de f'(0).

La fonction f est définie par $f(x) = (ax-2)e^{-x}$, où a est un nombre réel.

- 2. Montrer que $f'(x) = (-ax + a + 2)e^{-x}$ pour tout nombre réel x.
- 3. Déduire de ce qui précède la valeur de a. Donner l'expression de f'(x).
- 4. Étudier les variations de la fonction f sur l'intervalle [0;5].