Sorbonne Université 3MA260 2023-2024

Feuille 4, Exercice 5 - Corrigé

Exercice 5.

- **1.** Soit (X, d) un espace compact non-connexe. Montrer qu'il existe deux fermés non vides Y, Z et $\varepsilon > 0$ tels que $X = Y \cup Z$ et pour tout $(y, z) \in Y \times Z$ on a $d(y, z) \ge \varepsilon$.
- **2.** Donner un exemple d'espace métrique (X, d) qui est réunion disjointe de deux fermés $X = Y \sqcup Z$, et pour tout $\varepsilon > 0$ il existe $(y, z) \in Y \times Z$ tel que $d(y, z) < \varepsilon$.

Correction de la question 1 : Puisque (X, d) n'est pas connexe, il existe une partie $Y \subset X$ non vide et différente de X qui soit à la fois ouverte et fermée dans (X, d). En particulier, son complémentaire Z est également non vide, différente de X, et est un ouvert-fermé de (X, d). Il reste donc à montrer la dernière condition. Pour cela, on donne deux méthodes :

Méthode 1 : en utilisant directement la continuité de la distance

On considère l'application

$$\varphi: \begin{cases} Y \times Z \to \mathbb{R}_+ \\ (y, z) \mapsto d(y, z) \end{cases}$$

C'est une application continue, à valeurs strictement positives car $Y \cap Z = \emptyset$. De plus, Y et Z sont des parties fermées de l'espace compact (X,d). Ainsi, une fois munis de la distance induite par d, ce sont des espaces compacts. Le produit $Y \times Z$, muni d'une distance produit usuelle, est donc compact. L'application continue φ atteint donc sa borne inférieure sur $Y \times Z$. Notons (y_0, z_0) l'un des points où la borne inférieure est atteinte. En posant $\varepsilon := \varphi(y_0, z_0)$, on a bien $\varepsilon > 0$. Et par définition de la borne inférieure, on a également

$$\forall (y,z) \in Y \times Z, d(y,z) = \varphi(y,z) \ge \varphi(y_0,z_0) = \varepsilon$$

Méthode 2 : en passant par des suites

Soit $\varepsilon := d(Y, Z) = \inf_{y \in Y, z \in Z} d(y, z) \ge 0$. On cherche à montrer $\varepsilon > 0$. Pour cela, on commence par utiliser la caractérisation séquentielle de la borne inférieure. On dispose alors de deux suites, $(y_n \in Y)_n$ et $(z_n \in Z)$, telles que

$$d(y_n, z_n) \underset{n \to +\infty}{\longrightarrow} \varepsilon$$

Maintenant, Y et Z sont des parties fermées de l'espace compact (X,d). Donc en les munissant de la distance induite par d, ce sont des espaces compacts. On peut donc extraire une sous-suite convergente de la suite $(y_n \in Y)$ qui va converger dans Y. Notons $(y_{\varphi(n)})$ une telle sous-suite et $y \in Y$ sa limite. De même, il existe une sous-suite $(z_{\varphi(\psi(n))})$ de $(z_{\varphi(n)} \in Z)$ convergeant vers un $z \in Z$. On a encore

$$d(y_{\varphi(\psi(n))}, z_{\varphi(\psi(n))}) \xrightarrow[n \to +\infty]{} \varepsilon$$

Mais grâce à la continuité de la distance $d: X \times X \to \mathbb{R}$, on a également

$$\lim d(y_{\varphi(\psi(n))},z_{\varphi(\psi(n))}) = d(\lim y_{\varphi(\psi(n))},\lim z_{\varphi(\psi(n))}) = d(y,z) > 0$$

où d(y,z) > 0 car $Y \cap Z = \emptyset$. On a donc bien $\varepsilon > 0$, ce qui permet de conclure.

Correction de la question 2 : On se place dans \mathbb{R}^2 muni de la distance usuelle, et on pose

$$Y = \{(x, 1/x) \mid x > 0\} \text{ et } Z = \{(x, 0) \mid x \in \mathbb{R}\}\$$

On peut réécrire

$$Z = f^{-1}(\{0\})$$
 avec $f: \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \mapsto y \end{cases}$ (la projection sur la 2ème coordonnée)

L'application f étant continue, et $\{0\}$ étant un fermé de \mathbb{R} , on a montré que Z est un fermé de \mathbb{R}^2 .

Montrons maintenant que Y est fermé de \mathbb{R}^2 , grâce à la caractérisation séquentielle.

Soient $((x_n, y_n) \in Y)_n$ une suite convergente dans \mathbb{R}^2 . Notons $(x, y) \in \mathbb{R}^2$ sa limite, et montrons $(x, y) \in Y$. Puisque la convergence dans l'espace produit donne la convergence des coordonnées, on a que (x_n) converge vers x et (y_n) vers y. Par définition de Y, on a $y_n = 1/x_n$. Mais pour utiliser la continuité de $x \mapsto 1/x$ sur \mathbb{R}_+^* , il faut d'abord montrer $x \neq 0$.

Par l'absurde, si x=0. Alors (x_n) prendrait des valeurs arbitrairement proches de 0, donc $(y_n=1/x_n)$ prendrait des valeurs arbitrairement proches de l'infini. Ce qui est impossible puisque (y_n) converge et est donc bornée. On a donc $x \neq 0$, donc $y_n=1/x_n \to 1/x$. Or $y_n \to y$, donc l'unicité de la limite donne y=1/x, c'est-à-dire $(x,y) \in Y$.

On pose maintenant $X = Y \cup Z \subset \mathbb{R}^2$. On a alors $Y = Y \cap X$, et donc Y est aussi un fermé de X, et de même pour Z. Puis, ces fermés sont disjoints, car 1/x est toujours différent de 0. Il reste donc la dernière condition à vérifier.

Soit $\varepsilon > 0$. Prenons x > 0 tel que $\frac{1}{x} < \varepsilon$, c'est-à-dire $x > \frac{1}{\varepsilon}$. On considère

$$y = (x, 1/x) \in Y$$
 et $z = (x, 0) \in Z$

Alors

$$d(y,z) = \sqrt{(x-x)^2 + \left(\frac{1}{x} - 0\right)^2} = \frac{1}{|x|} < \varepsilon$$

c'est bien ce qu'on voulait.