~~NOCACHE~~ /* DO NOT EDIT THIS FILE */ /* THIS FILE WAS GENERATED */ /* EDIT THE FILE "indexheader" INSTEAD */ /* OR ACCESS THE DATABASE */ {{page>.:indexheader}} \\ ==== Next talks ==== [[en:seminaires:SeminaireThErgod:index|Ergodic theory seminar]]\\ Tuesday October 21, 2025, 10:30AM, Jussieu, Salle Paul Lévy, 16-26 209\\ **Matthew D. Foreman** (University of California, Irvine) //Impossibility results in Ergodic Theory// \\ Impossibility results have played an important role in mathematics, from questions like solutions of polynomials, the word problem in group theory to non-measurable subsets of $[0, 1]$. This talk will present new impossibility results about classical problems in ergodic theory and dynamical systems. They answer questions asked by von Neumann, Smale, Poincar\'e and others. Impossibility results have played an important role in mathematics, from questions like solutions of polynomials, the word problem in group theory to non-measurable subsets of [0, 1]. This talk will present new impossibility results about classical problems in ergodic theory and dynamical systems. They answer questions asked by von Neumann, Smale, Poincaré and others. [[en:seminaires:SeminaireThErgod:index|Ergodic theory seminar]]\\ Tuesday December 16, 2025, 10:30AM, Jussieu, Salle Paul Lévy, 16-26 209\\ **Christophe Leuridan** (Université de Grenoble I) //Endomorphismes non dilatants du tore// \\ On note η la mesure de Haar sur le tore Tᵈ. Tout endomorphisme surjectif T du groupe compact Tᵈ qui préserve la mesure de Haar est de la forme x ↦ Ax où A est une matrice à coefficients entiers de déterminant non nul. Les propriétés de T dépendent de la matrice A. En particulier, T est inversible si et seulement si |\det A| = 1, T est ergodique si et seulement si A n'a pas de valeur propre qui soit une racine de l'unité. Nous nous intéressons à l'exactitude de T (la tribu asymptotique ∩ T⁻ⁿ(Tᵈ) est-elle triviale ?), au caractère Bernoulli de l'endomorphisme T et si oui, à la régularité du générateur. {{page>.:info}} \\ ==== Previous talks ==== \\ === Year 2025 === {{page>.:seminairethergod2025}} \\ === Year 2024 === {{page>.:seminairethergod2024}} \\ === Year 2023 === {{page>.:seminairethergod2023}} \\ === Year 2022 === {{page>.:seminairethergod2022}}