Statistical inference versus mean field limit for Hawkes processes

Sylvain Delattre and Nicolas Fournier

Abstract. We consider a population of \(N \) individuals, of which we observe the number of actions until time \(t \). For each couple of individuals \((i,j)\), \(j \) may or not influence \(i \), which we model by i.i.d. Bernoulli(\(p \))-random variables, for some unknown parameter \(p \in (0,1] \). Each individual acts autonomously at some unknown rate \(\mu > 0 \) and acts by mimetism at some rate proportional to the sum of some function \(\varphi \) of the ages of the actions of the individuals which influence him. The function \(\varphi \) is unknown but assumed, roughly, to be decreasing and with fast decay. The goal of this paper is to estimate \(p \), which is the main characteristic of the graph of interactions, in the asymptotic \(N \to \infty, t \to \infty \). The main issue is that the mean field limit (as \(N \to \infty \)) of this model is unidentifiable, in that it only depends on the parameters \(\mu \) and \(p \varphi \). Fortunately, this mean field limit is not valid for large times. We distinguish the subcritical case, where, roughly, the mean number \(m_t \) of actions per individual increases linearly and the supercritical case, where \(m_t \) increases exponentially. Although the nuisance parameter \(\varphi \) is non-parametric, we are able, in both cases, to estimate \(p \) without estimating \(\varphi \) in a nonparametric way, with a precision of order \(N^{-1/2} + N^{1/2} m_t^{-1} \), up to some arbitrarily small loss. We explain, using a Gaussian toy model, the reason why this rate of convergence might be (almost) optimal.

1. Introduction and main results

1.1. Setting. We consider some unknown parameters \(p \in (0,1], \mu > 0 \) and \(\varphi : [0,\infty) \to [0,\infty) \). For \(N \geq 1 \), we consider an i.i.d. family \((\pi^i(dt,dz))_{i=1,\ldots,N}\) of Poisson measures on \([0,\infty) \times [0,\infty)\) with intensity measure \(dt dz \), independent of an i.i.d. family \((\theta_{ij})_{i,j=1,\ldots,N}\) of Bernoulli(\(p \))-distributed random variables. We also consider the system of equations, for \(i = 1, \ldots, N \),

\[
Z^{i,N}_t = \int_0^t \int_0^\infty 1_{\{z \leq \lambda^{i,N}_t\}} \pi^i(ds,dz) \quad \text{where} \quad \lambda^{i,N}_t = \mu + \frac{1}{N} \sum_{j=1}^N \theta_{ij} \int_0^t \varphi(t-s)dZ^{j,N}_s.
\]

Here and in the whole paper, \(\int_t^s \) means \(\int_{[t,s]} \) and \(\int_0^t^- \) means \(\int_{[0,t)} \). The solution \((Z^{i,N}_{t \geq 0})_{i=1,\ldots,N}\) is a family of \(N \) counting processes (that is, a.s. integer-valued, càdlàg and non-decreasing). The following well-posedness result is more or less well-known, see e.g. Brémaud-Massoulie [9] and [13] (we will apply directly the latter reference).

Proposition 1. Assume that \(\varphi \) is locally integrable and fix \(N \geq 1 \). The system (1) has a unique càdlàg \((\mathcal{F}_t)_{t \geq 0}\)-adapted solution \((Z^{i,N}_{t \geq 0})_{i=1,\ldots,N}\) such that \(\sum_{i=1}^N \mathbb{E}[Z^{i,N}_t] < \infty \) for all \(t \geq 0 \), where \(\mathcal{F}_t = \sigma(\pi^i(A) : A \in \mathcal{B}([0,t] \times [0,\infty)), i = 1, \ldots, N) \vee \sigma(\theta_{ij} : i, j = 1, \ldots, N) \).

2010 Mathematics Subject Classification. 62M09, 60J75, 60K35.

Key words and phrases. Multivariate Hawkes processes, Point processes, Statistical inference, Interaction graph, Stochastic interacting particles, Propagation of chaos, Mean field limit.

We thank the anonymous referees for their remarks that allowed us to improve consequently the presentation of the paper.
Let us provide a brief heuristic description of this process. We have N individuals and $Z_{i,N}^{t}$ stands for the number of actions of the i-th individual until t. We say that j influences i if and only if $\theta_{ij} = 1$ (with possibly $i = j$). Each individual i acts, at time t, with rate $\lambda_{i,N}^{t}$. In other words, each individual has an autonomous rate of action μ as well as a subordinate rate of action $N^{-1} \sum_{j=1}^{N} \theta_{ij} \int_{0}^{t} \varphi(t-s) dZ_{j,N}^{s}$, which depends on the number of actions of the individuals that influence him, with a weight N^{-1} and taking into account the age of these actions through φ. If for example $\varphi = a 1_{[0,K]}$, then the subordinate rate of action of i is simply a/N times the total number of actions, during $[t-K,t]$, of all the individuals that influence him.

As is well-known, a phase-transition occurs for such a model, see Hawkes-Oakes [18] (or [13] for such considerations on large networks): setting $\Lambda = \int_{0}^{\infty} \varphi(t) dt$,

- in the subcritical case where $\Lambda p < 1$, we will see that $Z_{1,N}^{t}$ increases linearly with time, at least on the event where the family $(\theta_{ij})_{i,j=1,...,N}$ behaves reasonably;
- in the supercritical case where $\Lambda p > 1$, we will see that $Z_{1,N}^{t}$ increases exponentially fast with time, at least on the event where the family $(\theta_{ij})_{i,j=1,...,N}$ behaves reasonably.

The limit theorems, and thus the statistical inference, completely differ in both cases, so that the present paper contains essentially two independent parts.

We will not study the critical case where $\Lambda p = 1$ because it is a very particular case. However, it would be very interesting to understand what happens near the critical case. Our results say nothing about this problem.

1.2. Assumptions. Recalling that $\Lambda = \int_{0}^{\infty} \varphi(s) ds$, we will work under one of the two following conditions: either for some $q \geq 1$,

\[(H(q)) \quad \mu \in (0, \infty), \quad \Lambda p \in (0, 1) \quad \text{and} \quad \int_{0}^{\infty} s^q \varphi(s) ds < \infty \]

or

\[(A) \quad \mu \in (0, \infty), \quad \Lambda p \in (1, \infty) \quad \text{and} \quad \int_{0}^{t} |d\varphi(s)| \text{ increases at most polynomially.} \]

In many applications, φ is smooth and has a fast decay, so that, except in the critical case, either $H(q)$ is satisfied for all $q \geq 1$ or A is satisfied.

1.3. References and fields of application. Hawkes processes have been introduced by Hawkes [17] and Oakes-Hawkes [18] have found a noticeable representation of such processes in terms of Galton-Watson trees. Since then, there has been a huge literature on Hawkes processes, see e.g. Daley and Vere-Jones [12] for an introduction, Massoulié [24], Brémaud-Massoulié [9] and [13] for stability results, Brémaud-Nappo-Torrisi [10], Zhu [35, 36] and [3] for limit theorems, etc. Hawkes processes are used in various fields of applications:

- earthquake replicas in seismology, see Helmstetter-Sornette [19], Kagan [23], Ogata [26], Bacry-Muzy [5],
- spike trains for brain activity in neuroscience, see Grün et al. [15], Okatan et al. [27], Pillow et al. [28], Reynaud et al. [31, 32],
- genome analysis, see Reynaud-Schbath [30],
- various fields of mathematical finance, see Aït-Sahalia et al. [1], Bauwens-Hautsch [6], Hewlett [20], Bacry et al. [2], Bacry-Muzy [4, 5],
- social networks interactions, see Blundell et al. [8] and Zhou et al. [34].
Concerning the statistical inference for Hawkes processes, only the case of fixed finite dimension N has been studied, to our knowledge, in the asymptotic $t \to \infty$ (for possibly more general shapes of interaction). Some parametric and nonparametric estimation procedures for μ and φ have been proposed, with or without rigorous proofs. Let us mention Ogata [25], Bacry-Muzzy [5], [2], the various recent results of Hansen et al. [16] and Reynaud et al. [30, 31, 32], as well as the Bayesian study of Rasmussen [20].

1.4. Goals and motivation. In many applications, the number of individuals is very large (think of neurons, financial agents or of social networks). Then we need some estimators in the asymptotic where N and t tend simultaneously to infinity. This problem seems to be completely open.

We assume that we observe $(Z_{i,t}^{1,N})_{i=1,...,N,s \in [0,t]}$ (or, for convenience, $(Z_{s}^{i,N})_{i=1,...,N,s \in [0,2t]}$), that is all the actions of the individuals on some (large) time interval.

In our point of view, we only observe the activity of the individuals, we do not know the graph of interactions. A very similar problem was studied in [32], although in fixed finite dimension N. Our goal is to estimate p, which can be seen as the main characteristic of the graph of interactions, since it represents the proportion of open edges. We consider μ and φ as nuisance parameters, although this is debatable. In the supercritical case, we will be able to estimate p without estimating μ nor φ. In the subcritical case, we will be able to recover p estimating only μ and the integral Λ of φ. In any case, we will not need to provide a nonparametric estimation of φ, and we believe it is a very good point: it would require regularity assumptions and would complicate a lot the study.

The main goal of this paper is to provide the basic tools for the statistical estimation of Hawkes processes when both the graph size and the observation time increase. Of course, this is only a toy model and we have no precise idea of real world applications, although we can think e.g. of neurons spiking: they are clearly numerous (so N is large), we can only observe their activities (each time they spike), and we would like to have an idea of the graph of interactions. See again [32] for a more convincing biological background. Think also of financial agents: they are also numerous, we can observe their actions (each time they buy or sell a product), and we would like to recover the interaction graph.

1.5. Mean field limit. We quickly describe the expected chaotic behavior of $((Z_{t}^{i,N})_{i=1,...,N})_{t \geq 0}$ as $N \to \infty$. We refer to Sznitman [33] for an introduction to propagation of chaos. Extending the method of [13, Theorem 8], it is not hard to check, assuming that $\int_{0}^{\infty} \varphi^{2}(s)ds < \infty$, that for each given $k \geq 1$ and $T > 0$, the sample $((Z_{t}^{i,N})_{i=1,...,k})_{t=0,T}$ goes in law, as $N \to \infty$, to a family $((Y_{t}^{i})_{t \in [0,T]})_{i=1,...,k}$ of i.i.d. inhomogeneous Poisson processes with intensity $(\lambda_{t})_{t \geq 0}$, unique locally bounded nonnegative solution to $\lambda_{t} = \mu + \int_{0}^{t} p \varphi(t-s) \lambda_{s} ds$.

On the one hand, approximate independence is of course a good point for statistical inference. On the other hand, the mean-field limit (i.e. the Y_{t}^{i}’s) depends on p and φ only through $(\lambda_{t})_{t \geq 0}$ and thus through $p \varphi$, which is a negative point: the mean-field limit is unidentifiable. The situation is however not hopeless because roughly, the mean-field limit does not hold true for the whole sample $(Z_{t}^{i,N})_{i=1,...,N}$ and is less and less true as time becomes larger and larger.

1.6. Main result in the subcritical case. For $N \geq 1$ and for $((Z_{t}^{i,N})_{i \geq 0})_{i=1,...,N}$ the solution to (1), we introduce $\bar{Z}^{N} = N^{-1} \sum_{i=1}^{N} Z_{t}^{i,N}$. We mention in the following remark, that we will prove later, that the number of actions per individual increases linearly in the subcritical case.
Remark 2. Assume $H(1)$. Then for all $\varepsilon > 0$,
\[
\lim_{(N,t) \to (\infty, \infty)} \Pr \left(\frac{Z_t^N}{t} - \frac{\mu}{1 - \Lambda p} \geq \varepsilon \right) = 0.
\]

We next introduce
\[
\mathcal{E}_t^N = \frac{Z_t^N - Z_{t-1}^N}{t}, \quad \forall t^N = \sum_{i=1}^N \left(\frac{Z_{i+1}^N - Z_i^N}{t} - \mathcal{E}_i^N \right)^2 - \frac{N}{t} \mathcal{E}_t^N,
\]

\[
\mathcal{W}_{\Delta, t}^N = 2Z_{\Delta, t}^N - Z_{\Delta, t}^N, \quad \text{where} \quad Z_{\Delta, t}^N = \frac{N}{t} \sum_{k=\Delta(t)}^{\Delta(t)+1} \left(\frac{Z_k^N - Z_{k-1}^N}{t} - \Delta \mathcal{E}_t^N \right)^2.
\]

In the last expression, $\Delta \in (0, t)$ is required to be such that $t/(2\Delta) \in \mathbb{N}^*$.

Theorem 3. Assume $H(q)$ for some $q > 3$. For $t \geq 1$, put $\Delta_t = t/(2\{1^{-3/(q+1)}\})$: it holds that $t/(2\Delta_t) \in \mathbb{N}^*$ and that $\Delta_t \sim t^{4/(q+1)}/2$ as $t \to \infty$. There is a constant C depending only on p, μ, φ and q such that for all $\varepsilon \in (0, 1)$, all $N \geq 1$, all $t \geq 1$,
\[
\Pr \left(\left| \mathcal{E}_t^N - \frac{\mu}{1 - \Lambda p} \right| \geq \varepsilon \right) \leq \frac{C}{\varepsilon} \left(\frac{1}{\sqrt{N}} + \frac{1}{\sqrt{t^4}} \right),
\]
\[
\Pr \left(\left| \forall t^N - \frac{\mu^2 \Lambda^2 p (1-p)}{(1-\Lambda p)^3} \right| \geq \varepsilon \right) \leq \frac{C}{\varepsilon} \left(\frac{\sqrt{N}}{t} + \frac{1}{\sqrt{N}} \right),
\]
\[
\Pr \left(\left| \mathcal{W}_{\Delta, t}^N - \frac{\mu}{(1 - \Lambda p)^3} \right| \geq \varepsilon \right) \leq \frac{C}{\varepsilon} \left(\frac{1}{N} + \frac{1}{\sqrt{t^{1-4/(q+1)}}} \right).
\]

We will easily deduce the following corollary.

Corollary 4. Assume $H(q)$ for some $q > 3$. For $t \geq 1$, put $\Delta_t = t/(2\{1^{-3/(q+1)}\})$. There is a constant C depending only on p, μ, φ and q such that for all $\varepsilon \in (0, 1)$, all $N \geq 1$, all $t \geq 1$,
\[
\Pr \left(\left\| \Psi \left(\mathcal{E}_t^N, \forall t^N, \mathcal{W}_{\Delta, t}^N \right) - (\mu, \Lambda, \varphi) \right\| \geq \varepsilon \right) \leq \frac{2C}{\varepsilon} \left(\frac{1}{\sqrt{\sqrt{N}}} + \frac{1}{\sqrt{t^{1-4/(q+1)}}} \right)
\]
\[
\leq \frac{2C}{\varepsilon} \left(\frac{1}{\sqrt{\sqrt{N}}} + \frac{1}{\sqrt{t^{1-4/(q+1)}}} \right),
\]
where $\Psi = 1_D \Phi$ with $D = \{(u, v, w) \in \mathbb{R}^3 : u > 0, v \geq 0\}$ and $\Phi : D \to \mathbb{R}^3$ defined by
\[
\Phi_1(u, v, w) = u \sqrt{\frac{w}{u}}, \quad \Phi_2(u, v, w) = v + \frac{[u - \Phi_1(u, v, w)]^2}{u[u - \Phi_1(u, v, w)]}, \quad \Phi_3(u, v, w) = \frac{1 - u^{-1}\Phi_1(u, v, w)}{\Phi_2(u, v, w)}.
\]

We did not optimize the dependence in q: in many applications, $H(q)$ holds for all $q \geq 1$.

1.7. Main result in the supercritical case. For $N \geq 1$ and for $(Z_i^{t,N})_{i=0}$t,N the solution to (1), we set $Z_t^{N,N} = N^{-1} \sum_{i=1}^N Z_i^{t,N}$. We will check later the following remark, which states that the mean number of actions per individual increases exponentially in the supercritical case.

Remark 5. Assume A and consider $\alpha_0 > 0$ uniquely defined by $p \int_0^\infty e^{-\alpha t} \varphi(t) dt = 1$. Then
\[
\lim_{t \to \infty} \lim_{N \to \infty} \Pr \left(Z_t^N \in [e^{(\alpha_0-\eta)t}, e^{(\alpha_0+\eta)t}] \right) = 1.
\]
We next introduce

\[\mathcal{U}_t^N = \left[\sum_{i=1}^{N} \left(\frac{Z_{t,i}^{N} - Z_{t}^{N}}{Z_{t}^{N}} \right)^2 - \frac{N}{Z_{t}^{N}} \right] 1(\bar{Z}_{t}^{N} > 0) \quad \text{and} \quad \mathcal{P}_t^N = \frac{1}{\mathcal{U}_t^N + 1} 1(\mathcal{U}_t^N > 0). \]

Theorem 6. Assume \(A \) and consider \(\alpha_0 > 0 \) defined in Remark 5. For all \(\eta > 0 \), there is a constant \(C_{\eta} > 0 \) (depending only on \(p, \mu, \varphi, \eta \)) such that for all \(N \geq 1 \), all \(t \geq 1 \), all \(\varepsilon \in (0, 1) \),

\[\Pr \left(|\mathcal{P}_t^N - p| \geq \varepsilon \right) \leq \frac{C_{\eta} e^{\alpha t}}{\varepsilon} \left(\frac{\sqrt{N}}{e^{\alpha t}} + \frac{1}{\sqrt{N}} \right). \]

1.8. **Detecting subcriticality and supercriticality.** In practice, we may of course not know if we are in the subcritical or supercritical case.

Proposition 7. (i) Under \(H(1) \), there are some constants \(0 < c < C \) depending only on \(p, \mu, \varphi \) such that for all \(N \geq 1 \), all \(t \geq 1 \), \(\Pr(\log(\bar{Z}_{t}^{N}) \geq (\log t)^2) \leq C(\varepsilon^{-cN} + t^{1/2}e^{-(\log \varepsilon)^2}) \).

(ii) Under \(A \), for all \(\eta > 0 \), there is a constant \(C_{\eta} \) depending only on \(p, \mu, \varphi, \eta \) such that for all \(N \geq 1 \), all \(t \geq 1 \), \(\Pr(\log(\bar{Z}_{t}^{N}) \leq (\log t)^2) \leq C_{\eta} e^{\eta t}(N^{-1/2} + e^{-\alpha t}). \)

It is then not hard to check that, with the notation of Corollary 4 and Theorem 6, under \(H(q) \) (for some \(q > 3 \) or \(A \)), the estimator

\[\hat{\mathcal{P}}_t^N = 1(\log(\bar{Z}_{t}^{N}) < (\log t)^2) \Psi_3(\mathcal{V}_{t/2}^N, W_{t/2}^N, \mathcal{W}_{2t/2,t/2}^N) + 1(\log(\bar{Z}_{t}^{N}) > (\log t)^2) \mathcal{P}_t^N, \]

which is based on the observation of \((Z_{s}^{N}, s \in [0, t], i=1, \ldots, N)\), converges in probability to \(p \), with the same speed of convergence as in Corollary 4 (under \(H(q) \) for some \(q > 3 \)) or as in Theorem 6 (under \(A \)).

1.9. **About optimality.** In Subsection 2.3, we will see on a toy model that there is no real hope to find an estimator of \(p \) with a better precision than \(N^{-1/2} + N^{1/2}m_t^{-1} \), where \(m_t \) is something like the mean number of jumps per individual during \([0, t]\). Consequently, we believe that the precision we found in Corollary 4 is almost optimal, since then \(m_t \approx t \) by Remark 2 and since we reach the precision \(N^{-1/2} + N^{1/2}t^{-1} \) for any \(\alpha > 0 \) (if \(\varphi \) has a fast decay), so that the loss is arbitrarily small. Similarly, the precision found in Theorem 6 is rather satisfying, since then \(m_t \approx e^{\alpha t} \) by Remark 5 and since we reach the precision \(e^{\eta t}(N^{-1/2} + N^{1/2}e^{-\alpha t}) \) for any \(\eta > 0 \), so that the loss is, here also, arbitrarily small.

The main default of the present paper is that the constants in Corollary 4 and in Theorem 6 strongly depend on the parameters \(\mu, \Lambda, p \). They also depend on \(q \) in the subcritical case. In particular, it would be quite delicate to understand how they behave when approaching, from below or from above, the critical case.

1.10. **About the modeling.** There are two main limitations in our setting.

Assuming that the \(\theta_{ij} \)'s are i.i.d. is of course a strong assumption. What we really need is that the family \((\theta_{ij})_{i,j=1,\ldots,N} \) satisfies similar properties as those shown in Subsection 4.1 (in the subcritical case) and in Subsection 5.1 (in the supercritical case). This clearly requires that the family \((\theta_{ij})_{i,j=1,\ldots,N} \) is not too far from being i.i.d., and it does not suffice that \(\lim_{N \to \infty} N^{-2} \sum_{i,j=1}^{N} \theta_{ij} = p \). However, we believe that all the conclusions of the present paper are still true if one assumes that \(\theta_{ij} \) for all \(1 \leq i < j \leq N \), which might be the case in some applications where the interactions are symmetric. A rigorous proof would require some work but should not be too hard. We will study this problem numerically at the end of the paper.
Assuming that we observe all the population is also rather stringent. It would be interesting to study what happens if one observes only \((Z_{t,N}^{i})_{i=1,\ldots,K; s \in [0,t]}\) for some \(K\) large but smaller than \(N\). It is not difficult to guess how to adapt the estimators to such a situation (see Section 7 for precise formulae). The theoretical analysis would require a careful and tedious study. Again, we will discuss this numerically.

1.11. Notation. We denote by \(\Pr_{\theta}\) the conditional probability knowing \((\theta_{ij})_{i,j=1,\ldots,N}\). We introduce \(\mathbb{E}_{\theta}, \text{Var}_{\theta}\) and \(\text{Cov}_{\theta}\) accordingly.

For two functions \(f,g : [0,\infty) \to \mathbb{R}\), we introduce (if it exists) \((f \ast g)(t) = \int_{0}^{t} f(t-s)g(s)ds\). The functions \(\varphi^{*n}\) will play an important role in the paper. Observe that, since \(\int_{0}^{\infty} \varphi(s)ds = \Lambda\), \(\int_{0}^{\infty} \varphi^{*n}(s)ds = \Lambda^{n}\). We adopt the conventions \(\varphi^{*0}(s)ds = \delta_{0}(ds)\) and \(\varphi^{*0}(t-s)ds = \delta_{t}(ds)\). We also adopt the convention that \(\varphi^{*n}(s) = 0\) for \(s < 0\).

All the finite constants used in the upperbounds are denoted by \(C\), the positive constants used in the lowerbounds are denoted by \(c\) and their values change from line to line. They are allowed to depend only on \(\mu, p\) and \(\varphi\) (and on \(q\) under \(H(q)\)), but never on \(N\) nor on \(t\). Any other dependence will be indicated in subscript. For example, \(C_{\eta}\) is a finite constant depending only on \(\mu, p, \varphi\) and \(\eta\) (and on \(q\) under \(H(q)\)).

1.12. Plan of the paper. In the next section, we try to give the main reasons why our estimators should be convergent, which should help the reader to understand the strategies of the proofs. We also briefly and formally introduce a Gaussian toy model in Section 2.3 to show that the rates of convergence we obtain are not far from being the best we can hope for. In Section 3, we prove Proposition 1 (strong existence and uniqueness of the process) and check a few more or less explicit formulæ concerning \((Z_{t,N}^{i})_{i=1,\ldots,N; t \geq 0}\) of constant use. Section 4 is devoted to the proof of Theorem 3 and Corollary 4 (main results in the subcritical case). Theorem 6 (main result in the supercritical case) is proved in Section 5. We check Proposition 7 in Section 6. Finally, we illustrate numerically the results of the paper and some possible extensions in the last section.

2. Heuristics

This section is completely informal and the symbol \(\simeq\) means nothing precise. For example,
\[
\text{\"Z}_{t}^{i,N} \simeq \mathbb{E}_{\theta}[Z_{t,N}^{i}] \text{ for } t \text{ large}\]
should be understood as “we hope that \(\text{\"Z}_{t}^{i,N} / \mathbb{E}_{\theta}[Z_{t,N}^{i}]\) tends to 1 as \(t \to \infty\) in probability or in another sense.”

2.1. The subcritical case. We assume that \(\Lambda p \in [0,1)\) and try to explain the asymptotics of \((Z_{t,N}^{i})_{i=1,\ldots,N; t \geq 0}\) and where the three estimators \(\hat{\ell}_{t}^{N}, \mathcal{V}_{t}^{N}\) and \(W_{\Delta, t}^{N}\) come from. We introduce the matrices \(A_{N}(i,j) = N^{-1}\theta_{ij}\) and \(Q_{N} = (I - \Delta A_{N})^{-1}\), which exists with high probability because \(\Lambda p < 1\). We also set \(\ell_{N}(i) = \sum_{j=1}^{N} Q_{N}(i,j)\) and \(c_{N}(i) = \sum_{j=1}^{N} Q_{N}(j,i)\).

Fixing \(N\) and knowing \((\theta_{ij})_{i,j=1,\ldots,N}\), we expect that \(Z_{t,N}^{i} \simeq \mathbb{E}_{\theta}[Z_{t,N}^{i}]\) for \(t\) large by a law of large numbers. Next, it is not hard to see that \(\mathbb{E}_{\theta}[Z_{t,N}^{i}] = \mu t + N^{-1} \sum_{j=1}^{N} \theta_{ij} \int_{0}^{t} \varphi(t-s)ds\) exists for each \(i = 1,\ldots,N\). Then, using that \(\int_{0}^{t} \varphi(t-s)ds \simeq \Lambda t\) for \(t\) large, we find that the vector \(\gamma_{N}\) must solve \(\gamma_{N} = \mu 1_{N} + \Lambda A_{N} \gamma_{N}\), where \(1_{N}\) is the \(N\)-dimensional vector with all coordinates equal to 1. This implies that \(\gamma_{N} = \mu (I - \Lambda A_{N})^{-1} 1_{N} \approx \mu \ell_{N}\). We thus expect that \(Z_{t,N}^{i} \simeq \mathbb{E}_{\theta}[Z_{t,N}^{i}] \simeq \mu \ell_{N}(i)t\). Based on this and setting \(\tilde{\ell}_{N} = N^{-1} \sum_{i=1}^{N} \ell_{N}(i)\), we expect that \(Z_{t,N} \simeq \mu \tilde{\ell}_{N} t\) for large values of \(t\), whence \(\hat{\ell}_{t}^{N} := t^{-1} Z_{t,N}^{i} \simeq \mu \tilde{\ell}_{N}^{N}\).
Knowing \((\theta_{ij})_{i,j=1,...,N}\), \(Z_{i,N}^t\) should resemble, roughly, a Poisson process, so that it should approximately hold true that \(\text{Var}_\theta(Z_{i,N}^t) \approx E_\theta[Z_{i,N}^t]^2\). Thus \(N^{-1} \sum_{i=1}^N (Z_{i,N}^t - \bar{Z}_{i,N}^t)^2\) should resemble \(\text{Var}(Z_i^1) = \text{Var}(E_\theta(Z_i^1)) + E[\text{Var}_\theta(Z_i^1)] \approx \text{Var}(E_\theta(Z_i^1)) + E[Z_i^1]\), which itself resembles \(N^{-1} \sum_{i=1}^N (E_\theta[Z_i^1] - E[Z_i^1])^2 = \bar{Z}_{i,N}^t \approx N^{-1} \mu^2 t^2 \sum_{i=1}^N (\ell_N(i) - \bar{\ell}_N)^2\). Consequently, we expect that \(\bar{Y}_{i,N}^t = t^{-2} \sum_{i=1}^N (Z_{i,N}^t - \bar{Z}_{i,N}^t)^2 - N \bar{Z}_{i,N}^t \approx \mu^2 \sum_{i=1}^N (\ell_N(i) - \ell_N)^2\) for \(t\) large.

Finally, the temporal empirical variance \(\Delta t^{-1} \sum_{i=1}^N [Z_{i,N}^t - \bar{Z}_{i,N}^t - \Delta t^{-1} \bar{Z}_{i,N}^t]^2\) should resemble \(\text{Var}_\theta[\bar{Z}_{i,N}^t]\) if \(1 \ll \Delta \ll t\). Thus \(\bar{W}_{\Delta,N}^t := \Delta t^{-1} \sum_{i=1}^N [Z_{i,N}^t - \bar{Z}_{i,N}^t - \Delta t^{-1} \bar{Z}_{i,N}^t]^2 \approx N \Delta^{-1} \text{Var}_\theta[\bar{Z}_{i,N}^t]\). Introducing the martingales \(M_{i,N}^t = Z_{i,N}^t - \bar{Z}_{i,N}^t\) (where \(C_{i,N}\) is the compensator of \(Z_{i,N}^t\)), the centered processes \(U_{i,N}^t = Z_{i,N}^t - E_\theta[Z_{i,N}^t]\), and the \(N\)-dimensional vectors \(U_{i,N}^t\) and \(M_{i,N}^t\) with coordinates \(U_{i,N}^t\) and \(M_{i,N}^t\), we will see in Section 3 that \(U_{i,N}^t = M_{i,N}^t + A_N^{i,j} \phi(t-s)U_{i,N}^s\), so that for large times, \(U_{i,N}^t \approx M_{i,N}^t + A_N^{i,j}U_{i,N}^s\) and thus \(U_{i,N}^t \approx Q_N M_{i,N}^t\). Consequently, we hope that \(\bar{U}_{i,N}^t \approx \overline{Q_N M_{i,N}^t}\), where \(\bar{U}_{i,N}^t = N^{-1} \sum_{i=1}^N U_{i,N}^t\) and \(\overline{Q_N M_{i,N}^t} = N^{-1} \sum_{i=1}^N \{Q_N M_{i,N}^t\}\). A little study shows that the martingales \(M_{i,N}^t\) are orthogonal and that \([M_{i,j,N}^t, M_{j,k,N}] = Z_{i,N}^t \approx \mu N^{-1} \text{Var}_\theta[\bar{Z}_{i,N}^t]\) if \(1 \ll \Delta \ll t\).

Thus we need to find the limits of \(\tilde{\ell}_N, \sum_{i=1}^N (\ell_N(i) - \bar{\ell}_N)^2\) and \(N^{-1} \sum_{i=1}^N (\ell_N(i) - \bar{\ell}_N)^2\) as \(N \to \infty\). It is not easy to make rigorous, but it holds true that \(\ell_N(i) \approx 1 + \Lambda(1 - \Lambda p)^{-1} L_N(i)\), where \(L_N(i) = \sum_{j=1}^N A_N(i,j)\). This comes from \(\sum_{i=1}^N A_N(i,j) = \sum_{i=1}^N A_N(i,j) \approx p \sum_{i=1}^N A_N(i,j) = p L_N(i)\), which implies that \(\ell_N(i) \approx 1 + \Lambda \sum_{j=1}^N A_N(i,j) \approx 1 + \sum_{n=1}^{\Lambda} \sum_{j=1}^N A_N(i,j) \approx 1 + \Lambda(1 - \Lambda p)^{-1} L_N(i)\). Once this is seen (as well as a similar fact for the columns), we get convinced. \(N L_N\) being a vector of \(N\) i.i.d. Binomial(\(N,p\))-distributed random variables, that \(\tilde{\ell}_N \approx 1/(1 - \Lambda p)\), that \(\sum_{i=1}^N (\ell_N(i) - \bar{\ell}_N)^2 \approx \Lambda^2 p(1-p)/(1 - \Lambda p)^2\) and that \(N^{-1} \sum_{i=1}^N (\ell_N(i) - \bar{\ell}_N)^2 \approx 1/(1 - \Lambda p)^3\).

At the end, it should be more or less true that, for \(t, \Delta\) and \(N\) large enough and in a suitable regime, \(\tilde{\ell}_N \approx \mu/(1 - \Lambda p)\), \(\tilde{\ell}_N \approx \mu^2 \Lambda^2 p(1-p)/(1 - \Lambda p)^2\), and \(\overline{W_{\Delta,N}^t} \approx \mu/(1 - \Lambda p)^3\). Of course, all this is completely informal and many points have to be clarified.

Observe that concerning \(\bar{Y}_{i,N}^t\), we use that \(Z_{i,N}^t\) resembles a Poisson process, while concerning \(\overline{W_{\Delta,N}^t}\), we use that \(Z_{i,N}^t\) does not resemble a Poisson process.

The three estimators \(\tilde{\ell}_N, \bar{Y}_{i,N}^t, \overline{W_{\Delta,N}^t}\) we study in the paper resemble much \(\tilde{\ell}_N, \bar{Y}_{i,N}^t, \overline{W_{\Delta,N}^t}\) and should converge to the same limits. Let us explain why we have modified the expressions. We started this subsection by the observation that \(\text{E}_\theta[Z_{i,N}^t] \approx \mu(t - \ell_N)^2\), on which the construction of the estimators relies. A detailed study shows that, under \(H(q), \text{E}_\theta[Z_{i,N}^t] = \mu(t - \ell_N)^2\), for some finite random variable \(\chi_{N,i}^q\). As a consequence, \(t^{-1} \text{E}_\theta[Z_{i,N}^t] \approx \mu(t - \ell_N)^2\) converges to \(\mu(t - \ell_N)^2\) considerably faster (with an error in \(t^{-q}\)) than \(t^{-1} \text{E}_\theta[Z_{i,N}^t] \approx \mu(t - \ell_N)^2\) (for which the error is of order \(t^{-1}\)). This explains our modifications and why these modifications are crucial.

Let us conclude this subsection with a technical issue. If \(\Lambda > 1\) (which is not forbidden even in the subcritical case), there is a positive probability that an anomalously high proportion of the \(\theta_{ij}\)’s equal 1, so that \(I - \Lambda A_N\) is not invertible and our multivariate Hawkes process is supercritical.
2.2. The supercritical case. We now assume that $\Lambda p > 1$ and explain the asymptotics of $(Z^t_i)_{i=1,...,N,t \geq 0}$ and where the estimator U^N_t comes from. We introduce $A_N(i,j) = N^{-1} \theta_{ij}$.

Fixing N and knowing $(\theta_{ij})_{i,j=1,...,N}$, we expect that $Z^t_i \simeq H_N \mathbb{E}_0[Z^0_i]$, for some random $H_N > 0$ not depending on i (and with H_N almost constant for N large). This is typically a supercritical phenomenon, that can already be observed on Galton-Watson processes. Fortunately, we will not really need to check it nor to study H_N, essentially because we will use the ratios Z^t_i / Z^0_i, which makes disappear H_N.

Next, we believe that $\mathbb{E}_0[Z^t_i] \simeq \gamma_N(i)e^{\alpha_N t}$ for t large, for some vector γ_N with positive entries and some exponent $\alpha_N > 0$. Inserting this into $\mathbb{E}_0[Z^t_i] = \mu + N^{-1} \sum_{j=1}^N \theta_{ij} \int_0^\infty \varphi(t-s) \mathbb{E}_0[Z^t_j] ds$, we find that $\gamma_N = A_N \gamma_N \int_0^\infty e^{-\alpha_N s} \varphi(s) ds$. The vector γ_N being positive, it is necessarily a Perron-Frobenius eigenvector of A_N, so that $\rho_N = \left(\int_0^\infty e^{-\alpha_N s} \varphi(s) ds \right)^{-1}$ is its Perron-Frobenius eigenvalue (i.e. its spectral radius). We now consider the normalized Perron-Frobenius eigenvector V_N such that $\sum_{i=1}^N (V_N(i))^2 = N$ and conclude that $Z^t_i \simeq K_N V_N(i)e^{\alpha_N t}$ for all $i = 1,...,N$, where $K_N = [N^{-1} \sum_{i=1}^N (\gamma_N(i))^2]^{1/2} H_N$.

Exactly as in the subcritical case, the empirical variance $N^{-1} \sum_{i=1}^N (Z^t_i - \bar{Z}^t_i)^2$ should resemble $N^{-1} \sum_{i=1}^N (\mathbb{E}_0[Z^t_i] - \mathbb{E}_0[\bar{Z}^t_i])^2 + \bar{Z}^t_i \simeq N^{-1} K_N^2 e^{2\alpha_N t} \sum_{i=1}^N (V_N(i) - \bar{V}_N)^2 + \bar{Z}^t_i$. Since we also guess that $\bar{Z}^t_i \simeq K_N \bar{V}_N e^{\alpha_N t}$, where $\bar{V}_N = N^{-1} \sum_{i=1}^N V_N(i)$, we expect that for t large, $U^N_t \simeq (\bar{Z}^t_i - \bar{Z}^t_i)^2 - N \bar{Z}^t_i \simeq (V_N)^{-1} \sum_{i=1}^N (V_N(i) - \bar{V}_N)^2$.

We now search for the limit of $(\bar{V}_N)^{-2} \sum_{i=1}^N (V_N(i) - \bar{V}_N)^2$ as $N \to \infty$. Roughly, $A^2_N(i,j) \simeq p^2/N$, whence, starting from $A_N^2 V_N = \rho_N^2 \bar{V}_N$, we see that $\rho_N^2 / \bar{V}_N \simeq p^2 \bar{V}_N$, where $\mathbf{1}_N$ is the N-dimensional vector with all coordinates equal to 1. Consequently, $V_N = (A_N V_N)/\rho_N \simeq \kappa_N A_N \mathbf{1}_N$, where $\kappa_N = (p^2/\rho_N^2) \bar{V}_N$. In other words, V_N is almost colinear to $L_N := A_N \mathbf{1}_N$, and L_N is a vector of N i.i.d. Binomial(N,p)-distributed random variables. It is thus reasonable to expect that $(\bar{V}_N)^{-2} \sum_{i=1}^N (V_N(i) - \bar{V}_N)^2 \simeq (\bar{L}_N)^{-2} \sum_{i=1}^N (L_N(i) - \bar{L}_N)^2 \simeq p^{-2} p(1-p) = 1/p - 1$.

All in all, we hope that for N and t large and in a suitable regime, $U^N_t \simeq 1/p - 1$.

Finally, let us mention that $\alpha_N \simeq \alpha_0$ (see Remark 5) because $\int_0^\infty e^{-\alpha_0 s} \varphi(s) ds = 1/\rho_N$, because $\int_0^\infty e^{-\alpha_0 s} \varphi(s) ds = 1/p$ and because $\rho_N \simeq p$. This last assertion follows from the fact that $A^2_N(i,j) \simeq p^2/N$, so that the largest eigenvalue of A^2_N should resemble p^2, whence that of A_N should resemble p.

Of course, all this is not clear and has to be made rigorous. Let us mention that we will use a quantified version of the Perron-Frobenius of G. Birkhoff [7]. As we will see, the projection onto the eigenvector V_N will be very fast (almost immediately for N very large).

As in the subcritical case, we will have to work on an event Ω^2_N, of high probability, on which the θ_{ij}'s behave reasonably. For example, to apply the Perron-Frobenius theorem, we have to be sure that the matrix A_N is irreducible, which is not a.s. true.

2.3. About optimality: a related toy model. Consider $\alpha_0 \geq 0$ and two unknown parameters $\Gamma > 0$ and $p \in (0,1]$. For $N \geq 1$, consider an i.i.d. family $(\theta_{ij})_{i,j=1,...,N}$ of Bernoulli(p)-distributed random variables, put $\lambda^N_{ij} = \Gamma e^{\alpha_0} \sum_{j=1}^N \theta_{ij}$ and, conditionally on $(\theta_{ij})_{i,j=1,...,N}$, consider
a family \((Z^{1,N}_t)_{t \geq 0}, \ldots, (Z^{N,N}_t)_{t \geq 0}\) of independent inhomogeneous Poisson processes with intensities \((\lambda_1^{1,N})_{t \geq 0}, \ldots, (\lambda_t^{N,N})_{t \geq 0}\). We observe \((Z^{i,N}_s)_{s \in [0,t], i=1, \ldots, N}\) and we want to estimate \(p\) in the asymptotic \((N,t) \to (\infty, \infty)\).

This problem can be seen as a strongly simplified version of the one studied in the present paper, with \(\alpha_0 = 0\) in the subcritical case and \(\alpha_0 > 0\) in the supercritical case. Roughly, the mean number of jumps per individual resembles \(m_t = \int_0^t e^{\alpha_0 s} ds\), which is of order \(t\) when \(\alpha_0 = 0\) and \(e^{\alpha_0^2}\) else.

There is classically no loss of information, since \(\alpha_0\) is known, if we only observe \((Z^{i,N}_t)_{i=1, \ldots, N}\): after a (deterministic and known) change of time, the processes \((Z^{i,N}_t)_{i=1, \ldots, N}\) become homogeneous Poisson processes with unknown parameters (conditionally on \((\theta^{i,N})_{i=1, \ldots, N}\)), and the conditional law of a Poisson process on \([0,t]\) knowing its value at time \(t\) does not depend on its parameter.

We next proceed to a Gaussian approximation: we have \(\lambda^{i,N}_t \simeq \Gamma e^{\alpha_0 t}[p + \sqrt{N^{-1}p(1-p)}] G_i\) and \(Z^{i,N}_t \simeq \int_0^t \lambda^{i,N}_s ds + \sqrt{\int_0^t \lambda^{i,N}_s ds H_i}\), for two independent i.i.d. families \((G_i)_{i=1, \ldots, N}\), \((H_i)_{i=1, \ldots, N}\) of \(\mathcal{N}(0,1)\)-distributed random variables. Using finally that \((m_t)^{-1} N^{-1/2} \ll (m_t)^{-1}\) in our asymptotic, we conclude that \((m_t)^{-1} Z^{i,N}_t \simeq \Gamma p + \sqrt{N^{-1}p(1-p)} G_i + (m_t)^{-1} \Gamma p H_i\), which is \(\mathcal{N}(\Gamma p, N^{-1} \Gamma^2 p(1-p) + (m_t)^{-1} \Gamma p)\)-distributed.

Our toy problem is thus the following: estimate \(p\) when observing a \(N\)-sample \((X^{i,N}_t)_{i=1, \ldots, N}\) of the \(\mathcal{N}(\Gamma p, N^{-1} \Gamma^2 p(1-p) + (m_t)^{-1} \Gamma p)\)-distribution. We assume that \(\Gamma p\) is known, which can only make easier the estimation of \(p\). As is well-known the statistic \(S^N_t = N^{-1} \sum_s (X^{1,N}_s - \Gamma p)^2\) is then sufficient and is the best estimator (in all the usual senses), for \(N \geq 1\) and \(t \geq 1\) fixed, of \(N^{-1} \Gamma^2 p(1-p) + (m_t)^{-1} \Gamma p\), so that \(T^N_t = N(\Gamma p)^{-2}(S^N_t - m_t^{-1} \Gamma p)\) is more or less the best estimator of \((1/p - 1)\). But \(\operatorname{Var} S^N_t = 2 N^{-1}(N^{-1} \Gamma^2 p(1-p) + (m_t)^{-1} \Gamma p)^2\), whence \(\operatorname{Var} T^N_t = 2(\Gamma p)^{-4}(N^{-1/2} \Gamma^2 p(1-p) + N^{1/2}(m_t)^{-1} \Gamma p)^2\). It is thus not possible to estimate \((1/p - 1)\) with a better precision than \(N^{-1/2} + N^{1/2} (m_t)^{-1}\). This of course implies that we cannot estimate \(p\) with a better precision than \(N^{-1/2} + N^{1/2} (m_t)^{-1}\).

3. WELL-POSEDNESS AND EXPLICIT FORMULAE

We first give the

Proof of Proposition 1. Conditionally on \((\theta^{i,j})_{i,j=1, \ldots, N}\), we can apply directly [13, Theorem 6], of which the assumption is satisfied here, see [13, Remark 5-(i)]: conditionally on \((\theta^{i,j})_{i,j=1, \ldots, N}\), there is a unique solution \((Z^{i,N}_t)_{t \geq 0, i=1, \ldots, N}\) to (1) such that \(\sum_{i=1}^N \mathbb{E}[Z^{i,N}_t] < \infty\) for all \(t \geq 0\). Since now \((\theta^{i,j})_{i=1, \ldots, N}\) can only take a finite number of values, we immediately deduce that indeed \(\sum_{i=1}^N \mathbb{E}[Z^{i,N}_t] < \infty\) for all \(t \geq 0\).

We carry on with a classical lemma. Recall that \(\varphi^0 (t-s) ds = \delta_t(ds)\) by convention.

Lemma 8. Consider \(d \geq 1\), \(A \in \mathcal{M}_{d \times d}(\mathbb{R})\), \(m, g : [0, \infty) \to \mathbb{R}^d\) locally bounded and assume that \(\varphi : [0, \infty) \to [0, \infty)\) is locally bounded. If \(m_t = g_t + \int_0^t \varphi(t-s) Am_s ds\) for all \(t \geq 0\), then \(m_t = \sum_{n \geq 0} \int_0^t \varphi^n(t-s) A^n g_s ds\).

Proof. The equation \(m_t = g_t + \int_0^t \varphi(t-s) Am_s ds\) with unknown \(m\) has at most one locally bounded solution. Indeed, consider two such solutions \(m, \bar{m}\), observe that \(u = \|m - \bar{m}\|\) satisfies \(u_t \leq |A| \int_0^T \varphi(t-s) u_s ds\), and conclude that \(u = 0\) by the generalized Gronwall lemma, see e.g. [13, Lemma 23-(i)]. We thus just have to prove that \(m_t := \sum_{n \geq 0} \int_0^t \varphi^n(t-s) A^n g_s ds\) is locally bounded.
and solves \(m = g + A\varphi \ast m \). We introduce \(k_t^n = |A|^n \int_0^t e^{*n}(s)ds \), which is locally bounded because \(\varphi \) is locally integrable and which satisfies \(k_t^{n+1} \leq |A|^n \int_0^t \varphi(t-s)ds \). We use [13, Lemma 22-(ii)] to conclude that \(\sum_{n \geq 0} k_t^n \) is locally bounded. Consequently, \(|m_t| \leq \sup_{[0,t]} |g_s| \times \sum_{n \geq 0} k_t^n \) is locally bounded. Finally, we write \(m = g + \sum_{n \geq 1} A^n \varphi^{*n} \ast g = g + A\varphi \ast \sum_{n \geq 0} A^n \varphi^{*n} \ast g = g + A\varphi \ast m \) as desired.

We next introduce a few processes.

Notation 9. Assume only that \(\varphi \) is locally integrable, fix \(N \geq 1 \) and consider the solution \((Z_{i,N}^t)_{t \geq 0, i=1,...,N} \) to (1). For each \(i = 1,\ldots,N \), we introduce the martingale (recall that \(\lambda_{i,N}^t \) was defined in (1))

\[
M_{i,N}^t = \int_0^t \int_0^\infty 1_{\{z \leq \lambda_{i,N}^s\}} \tilde{\pi}^i(ds,dz),
\]

where \(\tilde{\pi}^i(ds,dz) = \pi^i(ds,dz) - dsdz \) is the compensated Poisson measure associated to \(\pi^i \). We also introduce \(M_{i,N}^{*,*} = \sup_{[0,t]} |M_{i,N}^s| \), as well as the (conditionally) centered process

\[
U_{i,N}^t = Z_{i,N}^t - \mathbb{E}_\varnothing [Z_{i,N}^t].
\]

For each \(t \geq 0 \), we denote by \(Z_{i,N}^t \) (resp. \(M_{i,N}^t, M_{i,N}^{*,*}, U_{i,N}^t \)) the \(N \)-dimensional vector with coordinates \(Z_{i,N}^t \) (resp. \(M_{i,N}^t, M_{i,N}^{*,*}, U_{i,N}^t \)). We also set \(Z_i^N = N^{-1} \sum_{i=1}^N Z_{i,N}^t, M_i^N = N^{-1} \sum_{i=1}^N M_{i,N}^t \) and \(U_i^N = N^{-1} \sum_{i=1}^N U_{i,N}^t \).

We refer to Jacod-Shiryaev [22, Chapter 1, Section 4e] for definitions and properties of pure jump martingales and of their quadratic variations.

Remark 10. Since the Poisson measures \(\pi^i \) are independent, the martingales \(M_{i,N}^t \) are orthogonal. More precisely, we have \([M_{i,N}^t, M_{j,N}^t]_t = 0 \) if \(i \neq j \), while \([M_{i,N}^t, M_{i,N}^t]_t = Z_{i,N}^t \) (because \(Z_{i,N}^t \) counts the jumps of \(M_{i,N}^t \), which are all of size 1). Consequently, \(\mathbb{E}_\varnothing [M_{i,N}^{*,*} M_{j,N}^{*,*}] = \mathbf{1}_{\{i=j\}} \mathbb{E}_\varnothing [Z_{i,N}^{*,*}] \).

We now give some more or less explicit formulas. We denote by \(1_N \) the \(N \)-dimensional vector with all entries equal to 1 and we set \(A_N(i,j) = N^{-1} \delta_{ij} \) for \(i,j = 1,\ldots,N \).

Lemma 11. Assume only that \(\varphi \) is locally integrable. We have (recall that \(\varphi^*(t-s)ds = \delta_t(ds) \)):

\[
(2) \quad Z_{i,N}^t = M_{i,N}^t + \mu 1_N t + \int_0^t \varphi(t-s)A_N Z_s^N ds,
\]

\[
(3) \quad \mathbb{E}_\varnothing [Z_{i,N}^t] = \mu \sum_{n \geq 0} \left[\int_0^t s\varphi^{*n}(t-s)ds \right] A_N^{n} 1_N,
\]

\[
(4) \quad U_{i,N}^t = \sum_{n \geq 0} \int_0^t \varphi^{*n}(t-s)A_N^n M_s^N ds.
\]

Proof. The first expression is not difficult: starting from (1),

\[
Z_{i,N}^t = M_{i,N}^t + \int_0^t \lambda_{i,s}^N ds = M_{i,N}^t + \mu t + \sum_{j=1}^N A_N(i,j) \int_0^t \int_0^s \varphi(s-u)dZ_{i,u}^N ds.
\]

Using [13, Lemma 22], we see that \(\int_0^t \varphi(s-u)dZ_{i,u}^N ds = \int_0^t \varphi(t-s)Z_{i,s}^N ds \), whence indeed,

\[
Z_{i,N}^t = M_{i,N}^t + \mu t + \int_0^t \varphi(t-s) \sum_{j=1}^N A_N(i,j) Z_{i,j}^N ds.
\]
which is nothing but (2). Taking conditional expectations in (2), we find that \(\mathbb{E}_t[Z_i^N] = \mu_1^N t + \int_0^t \varphi(t-s)A_N \mathbb{E}_s[Z_i^N] ds \) and thus also \(U_i^N = M_i^N + \int_0^t \varphi(t-s)A_N U_i^N ds \). Since now \(\varphi \) is (a.s.) locally integrable, since \(\mu_1^N t \) and \(M_i^N \) are (a.s.) locally bounded, as well as \(\mathbb{E}_t[Z_i^N] \) and \(U_i^N \), (3) and (4) directly follow from Lemma 8. \(\square \)

4. The subcritical case

Here we consider the subcritical case. We first study the large \(N \)-asymptotic of the matrix \(Q_N = (I - \Lambda A_N)^{-1} \), which plays a central role in the rest of the section. In Subsection 4.2, we

4.1. Study of a random matrix.

We use the following standard notation: for \(x = (x_1, \ldots, x_N) \in \mathbb{R}^N \) and \(r \in [1, \infty) \), we set \(\|x\|_r = (\sum_{i=1}^N |x_i|^r)^{1/r} \) and \(\|x\|_\infty = \max_{i=1,\ldots,N} |x_i| \). For \(r \in [1, \infty] \), we denote by \(||| \cdot |||_r \) the operator norm on \(\mathcal{M}_{N \times N}(\mathbb{R}) \) associated to \(\| \cdot \|_r \). We recall that

\[
|||M|||_1 = \sup_{j=1,\ldots,N} \sum_{i=1}^N |M_{ij}|, \quad |||M|||_\infty = \sup_{i=1,\ldots,N} \sum_{j=1}^N |M_{ij}|
\]

and that for all \(r \in (1, \infty) \),

\[
(5) \quad \|||M|||_r \leq |||M|||_1^{1/r} |||M|||_\infty^{1-1/r}.
\]

Notation 12. We assume that \(\Lambda p < 1 \). For each \(N \geq 1 \), we introduce the \(N \times N \) random matrix \(A_N \) defined by \(A_N(i, j) = N^{-1} \theta_{ij} \), as well as the event

\[
(6) \quad \Omega_N^1 = \left\{ \Lambda |||A_N|||_r \leq a \text{ for all } r \in [1, \infty] \right\}, \text{ where } a = \frac{1 + \Lambda p}{2} \in (\Lambda p, 1).
\]

On \(\Omega_N^1 \), the \(N \times N \) matrix \(Q_N = \sum_{n \geq 0} \Lambda^n A_N^n = (I - \Lambda A_N)^{-1} \) is well-defined and we introduce, for each \(i = 1, \ldots, N \), \(\bar{\ell}_N(i) = \sum_{j=1}^N Q_N(i, j) \), \(c_N(i) = \sum_{j=1}^N Q_N(j, i) \), as well as \(\bar{\ell}_N = N^{-1} \sum_{i=1}^N \bar{\ell}_N(i) \) and \(c_N = N^{-1} \sum_{i=1}^N c_N(i) \). We of course have \(\bar{\ell}_N = c_N \).

Let us remark once for all that, with \(C = 1/(1 - a) < \infty \),

\[
(7) \quad \Omega_N^1 \subset \left\{ \|Q_N\|_r \leq C \text{ for all } r \in [1, \infty] \right\} \subset \left\{ \sup_{i=1,\ldots,N} \max\{\ell_N(i), c_N(i)\} \leq C \right\},
\]

\[
(8) \quad \Omega_N^1 \subset \left\{ 1_{\{i=j\}} \leq Q_N(i, j) \leq 1_{\{i=j\}} + \Lambda C N^{-1} \text{ for all } i, j = 1, \ldots, N \right\}.
\]

Indeed, (7) is straightforward since \(Q_N = \sum_{n \geq 0} \Lambda^n A_N^n \). To check (8), we first observe that \(Q_N(i, j) \geq \Lambda^0 A_N^0(i, j) = 1_{\{i=j\}} \). Next, we use that \(A_N(i, j) \leq N^{-1} \) while, for \(n \geq 2 \), \(A_N^0(i, j) = \sum_{k=1}^N A_N(i, k) A_N^{n-1}(k, j) \leq N^{-1} \sum_{k=1}^N A_N^{n-1}(k, j) \leq N^{-1} \|A_N^{n-1}\|_1 \leq N^{-1} \|A_N\|_\infty^{n-1} \). Thus \(A_N^0(i, j) \leq N^{-1} \|A_N\|_\infty^{n-1} \) for all \(n \geq 1 \). Hence on \(\Omega_N^1 \), it holds that \(Q_N(i, j) \leq 1_{\{i=j\}} + N^{-1} \sum_{n \geq 1} \Lambda^n \|A_N\|_\infty^{n-1} \leq 1_{\{i=j\}} + N^{-1} \Lambda/(1 - a) \) as desired.

Lemma 13. Assume that \(\Lambda p < 1 \). It holds that \(\Pr(\Omega_N^1) \geq 1 - C \exp(-cN) \).

Proof. By (5), it suffices to prove that \(\Pr(\|A_N\|_1 > a) \leq C \exp(-cN) \) and \(\Pr(\|A_N\|_\infty > a) \leq C \exp(-cN) \). Since \(\|A_N\|_\infty = \|A_N^0\|_1 \) and since \(A_N^0 \) (the transpose of \(A_N \)) has the same law as \(A_N \), it actually suffices to verify the first inequality. First, \(\|A_N\|_1 = \max\{X_i^N, \ldots, X_N^N\} \), where \(X_i^N = \sum_{j=1}^N \theta_{ij} \) is Binomial\((N, p)\)-distributed for each \(i \). Consequently, \(\Pr(\|A_N\|_1 > a) \leq \Pr(\|A_N^0\|_1 > a) \).
Proof. Recall that inequality (21) to obtain $\Pr(\Lambda N^{1/2} > a) \leq 2N\exp(-2N(a/\Lambda - p)^2) \leq C\exp(-N(a/\Lambda - p)^2)$ as desired.

The next result is much harder but crucial.

Proposition 14. Assume that $\Lambda p < 1$. It holds that

$$
\mathbb{E}\left[1_{\Omega_N^1} \left| \frac{\ell_N - 1}{1 - \Lambda p} \right|^2 \right] \leq \frac{C}{N^2},
$$

$$
\mathbb{E}\left[1_{\Omega_N^2} \left| \frac{1}{N} \sum_{i=1}^N \ell_N(i)(c_N(i))^2 - \frac{1}{(1 - \Lambda p)_2} \right|^2 \right] \leq \frac{C}{N^2},
$$

$$
\mathbb{E}\left[1_{\Omega_N^2} \left| \frac{1}{N} \sum_{i=1}^N (\ell_N(i) - \bar{\ell}_N)^2 - \frac{\Lambda^2 p(1 - p)}{(1 - \Lambda p)^2} \right| \right] \leq \frac{C}{\sqrt{N}}.
$$

Proof. Recall that 1_N is the N-dimensional vector of which all the coordinates equal 1. Let ℓ_N (resp. c_N) be the vector with coordinates $\ell_N(1), \ldots, \ell_N(N)$ (resp. $c_N(1), \ldots, c_N(N)$). We also introduce, for all $i = 1, \ldots, N$, $L_N(i) = \sum_{j=1}^N A_N(i, j)$ and $C_N(i) = \sum_{j=1}^N A_N(j, i)$, as well as the corresponding vectors L_N and C_N. Let us observe that, with obvious notation, $\ell_N = \bar{\ell}_N$ and $L_N = \bar{L}_N$. Finally, we introduce the vectors

$$
x_N = \ell_N - \bar{\ell}_N 1_N, \quad y_N = c_N - \bar{c}_N 1_N, \quad X_N = L_N - \bar{L}_N 1_N, \quad Y_N = C_N - \bar{C}_N 1_N.
$$

We recall that $a = (1 + \Lambda p)/2 \in (0, 1)$ and we introduce $b = (2 + \Lambda p)/3 \in (a, 1)$.

Step 1. We introduce the event

$$
A_N = \left\{ ||L_N - p 1_N||_2 + ||C_N - p 1_N||_2 \leq N^{1/4} \right\} \subset \left\{ ||X_N||_2 + ||Y_N||_2 \leq N^{1/4} \right\}.
$$

The inclusion comes from the fact that a.s., $||X_N||_2 = ||L_N - \bar{L}_N 1_N||_2 \leq ||L_N - x 1_N||_2$ for any $x \in \mathbb{R}$. Since $NL_N = (Z_N^1, \ldots, Z_N^N)$ with Z_N^i i.i.d. and Binomial(N, p)-distributed, it is very classical that for any $\alpha > 0$, $\mathbb{E}[||L_N - p 1_N||_2^2] \leq C_\alpha$ (uniformly in N), we have similarly $\mathbb{E}[||C_N - p 1_N||_2^2] \leq C_\alpha$, so that

$$
\Pr(\Lambda N^{1/2} > a) \geq 1 - C_\alpha N^{-\alpha/4}.
$$

Step 2. We now check the following points: (i) $\mathbb{E}[||\bar{L}_N - p||^2] \leq CN^{-2}$, (ii) $\mathbb{E}[||X_N||^2] \leq C$, (iii) $\mathbb{E}[(||X_N||^2 - p(1 - p)] \leq CN^{-1}$ and (iv) $\mathbb{E}[||A_N X_N||^2] \leq CN^{-1}$.

Point (i) is clear, because $\bar{L}_N = N^{-2} \sum_{j=1}^N \theta_{ij}$ is nothing but the empirical mean of N^2 independent Bernoulli(p)-random variables. Points (ii) and (iii) are very classical, since $N||X_N||^2$ is the empirical variance of N independent Binomial(N, p)-random variables. We now prove (iv):

$$
\mathbb{E}[||A_N X_N||^2] = \sum_{i=1}^N \mathbb{E}\left[\left(\sum_{j=1}^N \theta_{ij} (L_N(j) - \bar{L}_N) \right)^2 \right] = \frac{1}{N} \mathbb{E}\left[\left(\sum_{j=1}^N \theta_{ij} (L_N(j) - \bar{L}_N) \right)^2 \right].
$$

by symmetry. We now write $\mathbb{E}[||A_N X_N||^2] \leq 4N^{-1}(I_N + J_N + K_N)$, where

$$
I_N = \mathbb{E}\left[(\bar{L}_N - p)^2 \left(\sum_{j=1}^N \theta_{ij} \right)^2 \right], \quad J_N = \mathbb{E}\left[(\theta_{11} (L_N(1) - p))^2 \right], \quad K_N = \mathbb{E}\left[\left(\sum_{j=2}^N \theta_{ij} (L_N(j) - p) \right)^2 \right].
$$

First, \(I_N \leq N^2 \mathbb{E}((L_N - p)^2) \leq C \) by (i). Next, it is obvious that \(J_N \leq 1 \) (because \(\theta_{11} \in \{0,1\} \) and \(L_N(1) \in [0,1] \)). Finally, the random variables \(\theta_{ij}(L_N(j) - p) \) being i.i.d. and centered (for \(j = 2, \ldots, N \)), we may write

\[
K_N = (N-1) \mathbb{E} \left[(\theta_{12}(L_N(2) - p))^2 \right] \leq (N-1) \mathbb{E} \left[(L_N(2) - p)^2 \right] \leq C,
\]

since \(NL_N(2) \) follows a Binomial\((N, p)\)-distribution. This completes the step.

Step 3. We next prove that (i) \(x_N = \Lambda A_N x_N - \Lambda r_N 1_N + \bar{\ell}_N X_N \) on \(\Omega_N^1 \), where \(r_N = N^{-2} \sum_{i,j=1}^N (\theta_{ij} - p) x_N(j) \) and (ii) \(|r_N| \leq N^{-3/4} \|x_N\|_2 \) on \(\Omega_N^1 \cap A_N \).

We start from \(\ell_N = Q_N 1_N = (I - \Lambda A_N)^{-1} 1_N \), whence \(\ell_N = 1_N + \Lambda A_N \ell_N \). Since \(\bar{\ell}_N = N^{-1}(\ell_N, 1_N) \), we see that \(\bar{\ell}_N = 1 + \Lambda N^{-1}(A_N \ell_N, 1_N) \) (here \((\cdot, \cdot)\) is the usual scalar product on \(\mathbb{R}^N \) and thus

\[
x_N = \Lambda A_N \ell_N - N^{-1}(A_N \ell_N, 1_N) 1_N
\]

\[
= \Lambda A_N x_N - N^{-1}(A_N x_N, 1_N) 1_N + \bar{\ell}_N \Lambda A_N 1_N - \bar{\ell}_N \Lambda N^{-1}(A_N 1_N, 1_N) 1_N.
\]

It only remains to check that \(N^{-1}(A_N x_N, 1_N) = r_N \), which follows from \(N^{-1}(A_N x_N, 1_N) = N^{-2} \sum_{i,j=1}^N \theta_{ij} x_N(j) \) and the fact that \(\sum_{j=1}^N x_N(j) = 0 \); and that \(A_N 1_N - N^{-1}(A_N 1_N, 1_N) 1_N = X_N \), which is clear since \(A_N 1_N = L_N \).

To verify (ii), we observe that \(r_N = N^{-1} \sum_{j=1}^N (C_N(j) - p) x_N(j) \), whence, by the Cauchy-Schwarz inequality, \(|r_N| \leq N^{-1} \|x_N\|_2 \|C_N - p 1_N\|_2 \leq N^{-3/4} \|x_N\|_2 \) on \(\Omega_N^1 \cap A_N \).

Step 4. Let \(N_0 \) be the smallest integer such that \(a + \Lambda N_0^{-1/4} \leq b \). We check that for all \(N \geq N_0 \),

\[
1_{\Omega_N^1 \cap A_N} \|x_N\|_2 \leq C \|X_N\|_2.
\]

Using Step 3 and that \(\|1_N\|_2 = N^{1/2} \), we write \(\|x_N\|_2 \leq \Lambda \|A_N\|_2 \|x_N\|_2 + \Lambda N^{-1/4} \|x_N\|_2 + \Lambda \bar{\ell}_N \|X_N\|_2 \). But on \(\Omega_N \), \(\Lambda \|A_N\|_2 \leq a \) and \(|\bar{\ell}_N| \leq C \), see (6) and (7). Hence, for \(N \geq N_0 \), on \(\Omega_N^1 \cap A_N \), we have \(\|x_N\|_2 \leq (a + \Lambda N^{-1/4}) \|x_N\|_2 + C \|X_N\|_2 \leq b \|x_N\|_2 + C \|X_N\|_2 \). Since \(b < 1 \), the conclusion follows.

Step 5. We now prove that for \(N \geq N_0 \),

\[
\mathbb{E} \left[1_{\Omega_N^1 \cap A_N} \left\| \bar{\ell}_N - \frac{1}{1 - \Lambda p} \right\|^2 \right] \leq \frac{C}{N^2}.
\]

Using Step 3, we know that on \(\Omega_N^1 \cap A_N \), \(\ell_N = 1_N + \Lambda A_N \ell_N \), whence

\[
\bar{\ell}_N = 1 + \frac{\Lambda}{N} \sum_{i,j=1}^N A_N(i,j) \ell_N(j) = 1 + \frac{\Lambda}{N} N \sum_{j=1}^N C_N(j) \ell_N(j) = 1 + \Lambda p \bar{\ell}_N + S_N,
\]

where \(S_N = \Lambda N^{-1} \sum_{j=1}^N (C_N(j) - p) \ell_N(j) \). Consequently, \(\bar{\ell}_N = (1 - \Lambda p)^{-1}(1 + S_N) \), and we only have to prove that \(\mathbb{E} \left[1_{\Omega_N^1 \cap A_N} S_N^2 \right] \leq CN^{-2} \). To this end, we write \(S_N = \Lambda N^{-1}(a_N + b_N) \), where \(a_N = \sum_{j=1}^N (C_N(j) - p) x_N(j) \) and \(b_N = \bar{\ell}_N \sum_{j=1}^N (C_N(j) - p) \). First, since \(|\bar{\ell}_N| \leq C \) on \(\Omega_N^1 \) by (7), we can write \(\mathbb{E} \left[1_{\Omega_N^1 \cap A_N} b_N^2 \right] \leq C \mathbb{E} \left[\sum_{j=1}^N (C_N(j) - p)^2 \right] = C N^2 \mathbb{E} \left[(\bar{C}_N - p)^2 \right] \leq C \), the last inequality coming from Step 2-(i) since \(\bar{C}_N = \bar{L}_N \). Next, we use the Cauchy-Schwarz inequality: \(a_N^2 \leq \|C_N - p 1_N\|_2 \|x_N\|_2 \leq C \|C_N - p 1_N\|_2 \|X_N\|_2 \) on \(\Omega_N^1 \cap A_N \) by Step 4. Consequently, \(\mathbb{E} \left[1_{\Omega_N^1 \cap A_N} a_N^2 \right] \leq C \mathbb{E} \left[\|X_N\|_2^2 \right] C^2 \|C_N - p 1_N\|_2^2 \|X_N\|_2^2 \). But \(\mathbb{E} \left[\|X_N\|_2^2 \right] \leq C \) by Step 2-(ii) and we have seen at the end of Step 1 that \(\mathbb{E} \left[\|C_N - p 1_N\|_2^2 \right] \leq C \).
Step 6. Here we verify that, still for $N \geq N_0$,

$$
\mathbb{E}\left[\mathbf{1}_{\Omega_k \cap A_N} \left(\frac{1}{N} \sum_{i=1}^{N} \ell_N(i) (c_N(i))^2 - \frac{1}{(1-\Lambda p)^3} \right) \right] \leq C \frac{N^2}{N^2}.
$$

We write, using that $\tilde{c}_N = \bar{\ell}_N$,

$$
\frac{1}{N} \sum_{i=1}^{N} \ell_N(i) (c_N(i))^2 = \frac{1}{N} \sum_{i=1}^{N} \ell_N(i) (c_N(i) - \tilde{c}_N)^2 + (\bar{\ell}_N)^2 + \frac{2}{N} \sum_{i=1}^{N} \ell_N(i) (c_N(i) - \tilde{c}_N).
$$

First, since $|\bar{\ell}_N| \leq C$ on Ω_N, we have $||\bar{\ell}_N|^3 - (1-\Lambda p)^{-3}|| \leq C |\bar{\ell}_N| - (1-\Lambda p)^{-1}$, whence $\mathbb{E}[1_{\Omega_k \cap A_N}|(\bar{\ell}_N)^3 - (1-\Lambda p)^{-3}] \leq CN^{-2}$ by Step 5. It thus suffices to verify that $\mathbb{E}[1_{\Omega_k \cap A_N}((a'_N)^2 + (b'_N)^2)] \leq C$, where $a'_N = \sum_{i=1}^{N} \ell_N(i)(c_N(i) - \tilde{c}_N)^2$ and $b'_N = \sum_{i=1}^{N} \ell_N(i)(c_N(i) - \tilde{c}_N)$.

First, it holds that $b'_N = \sum_{i=1}^{N} \ell_N(i)y_N(i) = \sum_{i=1}^{N} x_N(i)y_N(i)$ because $\sum_{i=1}^{N} y_N(i) = 0$. Hence $|b'_N| \leq ||x_N||_{2} ||y_N||_{2}$. But on $\Omega_N \cap A_N$, we know from Step 4 that $||x_N||_{2} \leq C||X_N||_{2}$, and it obviously also holds true that $||y_N||_{2} \leq C||Y_N||_{2}$. We thus conclude that $\mathbb{E}[1_{\Omega_k \cap A_N}(b'_N)^2] \leq C \|x_N\|^2 \mathbb{E}[\|y_N\|^2] = \mathbb{E}[\|X_N\|^2] \|y_N\|^2$. Using finally Step 2-(ii), we deduce that indeed, $\mathbb{E}[1_{\Omega_k \cap A_N}(a'_N)^2] \leq C$. Next, since $|\bar{\ell}_N(i)| \leq C$ on Ω_N by (7), we can write $|a'_N| \leq C|c_N - \tilde{c}_N||x_N||_{2} = C|y_N||y_N||_{2}$. We conclude as previously that $\mathbb{E}[1_{\Omega_k \cap A_N}(a'_N)^2] \leq C$.

Step 7. The goal of this step is to establish that, for all $N \geq N_0$,

$$
\mathbb{E}\left[1_{\Omega_k \cap A_N} \left(||x_N||_{2}^2 - \frac{\Lambda^2 p(1-p)}{(1-\Lambda p)^2} \right) \right] \leq \frac{C}{\sqrt{N}}.
$$

Starting from Step 3, we write

$$
x_N - \Lambda\bar{\ell}_N X_N = \Lambda A_N x_N - \Lambda r_N \mathbf{1}_N = \Lambda A_N (x_N - \Lambda\bar{\ell}_N X_N) + \Lambda^2 \bar{\ell}_N A_N X_N - \Lambda r_N \mathbf{1}_N.
$$

Thus

$$
||x_N - \Lambda\bar{\ell}_N X_N||_{2} \leq \Lambda ||A_N||_{2}||x_N - \Lambda\bar{\ell}_N X_N||_{2} + \Lambda^2 ||\bar{\ell}_N|| ||A_N X_N||_{2} + \Lambda N^{-1/2} ||C_N - p\mathbf{1}_N||_{2}||x_N||_{2},
$$

where we used that $||1_N||_{2} = N^{1/2}$ and that $|r_N| \leq N^{-1}||C_N - p\mathbf{1}_N||_{2}||x_N||_{2}$ on $\Omega_N \cap A_N$, as checked at the end of Step 3. Using now that $\Lambda ||A_N||_{2} \leq a < 1$ and $|\bar{\ell}_N| \leq C$ on Ω_N and that $||x_N||_{2} \leq C||X_N||_{2}$ on $\Omega_N \cap A_N$ by Step 4, we conclude that, still on $\Omega_N \cap A_N$,

$$
||x_N - \Lambda\bar{\ell}_N X_N||_{2} \leq C(||A_N X_N||_{2}^2 + CN^{-1}||C_N - p\mathbf{1}_N||_{2}^2||X_N||_{2}^2).
$$

Since now $\mathbb{E}[||A_N X_N||_{2}^2] \leq CN^{-1}$ by Step 2-(iv), since $\mathbb{E}[||X_N||_{2}^4] \leq C$ by Step 2-(ii) and since $\mathbb{E}[||C_N - p\mathbf{1}_N||_{2}^2] \leq C$ (see the end of Step 1), we deduce that

$$
\mathbb{E}\left[1_{\Omega_k \cap A_N} ||x_N - \Lambda\bar{\ell}_N X_N||_{2}^2 \right] \leq \frac{C}{\sqrt{N}}.
$$

Next, we observe that $||X_N||_{2}^2 - (\Lambda\bar{\ell}_N)^2 ||X_N||_{2}^2 \leq ||x_N - \Lambda\bar{\ell}_N X_N||_{2}(|x_N||_{2} + ||\bar{\ell}_N|| ||X_N||_{2}) \leq C||x_N - \Lambda\bar{\ell}_N X_N||_{2}||X_N||_{2}$ on $\Omega_N \cap A_N$ by Step 4 and since $\bar{\ell}_N$ is bounded on Ω_N. Hence

$$
\mathbb{E}\left[1_{\Omega_k \cap A_N} \left(||x_N||_{2}^2 - (\Lambda\bar{\ell}_N)^2 ||X_N||_{2}^2 \right) \right] \leq \frac{C}{\sqrt{N}} \mathbb{E}[||X_N||_{2}^4] \leq \frac{C}{\sqrt{N}}
$$

by Step 2-(ii). To complete the step, it only remains to verify that

$$
d_N = \mathbb{E}\left[1_{\Omega_k \cap A_N} (\bar{\ell}_N)^2 ||X_N||_{2}^2 - p(1-p)(1-\Lambda p)^{-2} \right] \leq \frac{C}{\sqrt{N}}.
$$
We naturally write $d_N \leq a''_N + b''_N$, where

$$a''_N = \mathbb{E}\left[\mathbf{1}_{\Omega^1_N \cap A_N}(\bar{\ell}_N)^2 - (1 - \Lambda p)^{-2}\right],$$

$$b''_N = (1 - \Lambda p)^{-2}\mathbb{E}\left[\mathbf{1}_{\Omega^1_N \cap A_N}\|X_N\|^2 - p(1 - p)\right].$$

Step 2-(iii) directly implies that $b''_N \leq CN^{-1/2}$. Using that $\bar{\ell}_N$ is bounded on Ω^1_N, we deduce that $|\bar{\ell}_N|^2 = (1 - \Lambda p)^{-2}\mathbb{E}[\|X_N\|^2 - p(1 - p)]$.

Thus

$$a''_N \leq CE\left[\mathbf{1}_{\Omega^1_N \cap A_N}(\bar{\ell}_N - (1 - \Lambda p)^{-1})^2\right]^{1/2}\mathbb{E}[\|X_N\|^4]^{1/2}.$$

Step 2-(ii) and Step 5 imply that $a''_N \leq CN^{-1} \leq CN^{-1/2}$ as desired.

Step 8. It remains to conclude. Clearly suffices to treat the case where $N \geq N_0$, because $\ell_N(i)$ and $c_N(i)$ are uniformly bounded on Ω^1_N by (7), so that the inequalities of the statement are trivial when $N \leq N_0$ (if the constant C is large enough). Since $\bar{\ell}_N$ is (uniformly) bounded on Ω^1_N, we have

$$\mathbb{E}\left[1_{\Omega^1_N}\left|\bar{\ell}_N - \frac{1}{1 - p}\right|^2\right] \leq \mathbb{E}\left[1_{\Omega^1_N}\left|\bar{\ell}_N - \frac{1}{1 - p}\right|^2\right] + C\mathbb{P}((A_N)^c).$$

The first term is bounded by CN^{-2} (by Step 5), as well as the second one (use the last inequality of Step 1 with $\alpha = 8$).

Similarly, using Step 6 and that $\ell_N(i)$ and $c_N(i)$ are (uniformly) bounded on Ω^1_N, we see that

$$\mathbb{E}\left[1_{\Omega^1_N}\left|\frac{1}{N} \sum_{i=1}^N \ell_N(i)(c_N(i))^2 - \frac{1}{(1 - p)}\right|^2\right] \leq \frac{C}{N^2} + C\mathbb{P}((A_N)^c) \leq \frac{C}{N^2}.$$

Finally, observe that $\sum_{i=1}^N(\ell_N(i) - \bar{\ell}_N)^2 = \|X_N\|^2_2$ is bounded by CN on Ω^1_N, so that by Step 7,

$$\mathbb{E}\left[1_{\Omega^1_N}\left|\frac{1}{N} \sum_{i=1}^N (\ell_N(i) - \bar{\ell}_N)^2 - \frac{\Lambda^2 p(1 - p)}{(1 - p)^2}\right| \leq \frac{C}{\sqrt{N}} + CN\mathbb{P}((A_N)^c) \leq \frac{C}{\sqrt{N}}.$$

We used the last inequality of Step 1 with $\alpha = 6$.

4.2. Preliminary analytic estimates. In view of (3) and (4), it will be necessary for our purpose to study very precisely the behavior of φ^{*n}, which we now do. The following statements may seem rather tedious, but they are exactly the ones we need. Recall that $\varphi^0(t - s) ds = \delta(t)(ds)$ and that $\varphi^{*n}(s) = 0$ for $s < 0$ by convention.

Lemma 15. Recall that $\varphi : [0, \infty) \to [0, \infty)$ and that $\Lambda = \int_0^\infty \varphi(s) ds$. Assume that there is $q \geq 1$ such that $\int_0^\infty s^q \varphi(s) ds < \infty$ and set $\kappa = \Lambda^{-1}\int_0^\infty s \varphi(s) ds$.

(i) For $n \geq 0$ and $t \geq 0$, we have $\int_0^t \kappa \varphi^* (t - s) ds = \Lambda^n t - n \Lambda^n \kappa + \varepsilon_n(t)$, where

$$0 \leq \varepsilon_n(t) \leq Cn^q \Lambda^{n+1-q} \text{ and } \varepsilon_n(t) \leq n \Lambda^n \kappa.$$

(ii) For $n \geq 0$, for $0 \leq t \leq z$ and $s \in [0, z]$, we set $\beta_n(t, z, s) = \varphi^* (z - s) - \varphi^* (t - s)$. Then

$$\int_0^z |\beta_n(t, z, s)| ds \leq 2 \Lambda^n \text{ and for all } 0 \leq \Delta \leq t \text{ and all } z \in [t, t + \Delta],$$

$$\left|\int_0^t \beta_n(t, z, s) ds\right| \leq Cn^q \Lambda^n \Delta^{-q} \text{ and } \int_0^{t-\Delta} |\beta_n(t, z, s)| ds + \int_0^z |\beta_n(t, z, s)| ds \leq Cn^q \Lambda^n \Delta^{-q}.$$
(iii) For \(m, n \geq 0 \), for \(0 \leq t \leq z \), we put \(\gamma_{m,n}(t,z) = \int_0^z \int_0^z (s \wedge u) \beta_m(t,z,s) \beta_n(t,z,u) duds \). It holds that \(0 \leq \gamma_{m,n}(t,t+\Delta) \leq \Lambda^{m+n} \Delta \), for all \(t \geq 0 \), all \(\Delta \geq 0 \). Furthermore, there is a family \(\kappa_{m,n} \) satisfying \(0 \leq \kappa_{m,n} \leq (m+n)\kappa \) such that, for all \(0 \leq \Delta \leq t \),

\[
\gamma_{m,n}(t,t+\Delta) = \Delta \Lambda^{m+n} - \kappa_{m,n} \Lambda^{m+n} + \epsilon_{m,n}(t,t+\Delta),
\]

with \(|\epsilon_{m,n}(t,t+\Delta)| \leq C(m+n)^q \Lambda^{m+n} t \Delta^{-q} \).

Proof. We introduce some i.i.d. random variables \(X_1, X_2, \ldots \) with density \(\Lambda^{-1} \varphi \) and set \(S_0 = 0 \) as well as \(S_n = X_1 + \cdots + X_n \) for all \(n \geq 1 \). We observe that, by the Minkowski inequality, \(\mathbb{E}[S_n^2] \leq n^q \mathbb{E}[X_1^2] \leq C n^q \), since \(\mathbb{E}[X_1^2] = \Lambda^{-1} \int_0^\infty s^q \varphi(s) ds < \infty \) by assumption.

To check (i), we use that \(S_n \) has for density \(\Lambda^{-n} \varphi^n \), so that we can write

\[
\int_0^t s \varphi^n (t-s) ds = \int_0^t (t-s) \varphi^n (s) ds = \Lambda^n \mathbb{E}[(t-S_n)_+] = \Lambda^n t - \Lambda^n \mathbb{E}[S_n] + \epsilon_n(t),
\]

where \(\epsilon_n(t) = \Lambda^n \mathbb{E}[(S_n - t) 1_{\{S_n \geq t\}}] \). We clearly have that \(\mathbb{E}[S_n] = n \kappa \), that \(\epsilon_n(t) \geq 0 \) and that \(\epsilon_n(t) \leq \Lambda^n \mathbb{E}[S_n] = n \Lambda^n \kappa \). Finally, \(\epsilon_n(t) \leq \Lambda^n \mathbb{E}[S_n 1_{\{S_n \geq t\}}] \leq \Lambda^n t^{-q} \mathbb{E}[S_n^q] \leq C n^q \Lambda^n t^{-q} \).

To check (ii), we observe that \(\int_0^t |\beta_n(t,z,s)| ds \leq 2 \Lambda^n \) is obvious because \(\int_0^\infty \varphi^n(s) ds = \Lambda^n \) and that, since \(\mathbb{E}[S_n^q] \leq C n^q \),

\[
\int_r^\infty \varphi^n(u) du = \Lambda^n \Pr(S_n \geq r) \leq C n^q \Lambda^n r^{-q}.
\]

We write \(\int_0^z \beta_n(t,z,s) ds = \int_0^z \varphi^n(z-s) ds - \int_0^t \varphi^n(t-s) ds = \int_0^z \varphi^n(u) du \), which implies that \(|\int_0^z \beta_n(t,z,s) ds| \leq \int_0^\infty \varphi^n(u) du \leq C n^q \Lambda^n t^{-q} \). Next, we see that \(\int_0^{t-\Delta} |\beta_n(t,z,s)| ds \leq \int_0^{t-\Delta} \varphi^n(z-u) du + \int_0^{t-\Delta} \varphi^n(t-u) du \leq 2 \int_0^\infty \varphi^n(u) du \leq C n^q \Lambda^n \Delta^{-q} \). Finally, using the two previous bounds, \(|\int_0^z \beta_n(t,z,s) ds| \leq |\int_0^z \beta_n(t,z,s) ds| + |\int_0^{t-\Delta} \beta_n(t,z,s) ds| \leq C n^q \Lambda^n t^{-q} + C n^q \Lambda^n \Delta^{-q} \leq C n^q \Lambda^n \Delta^{-q} \) because \(\Delta \in [0,t] \) by assumption.

We finally prove (iii) and thus consider \(0 \leq \Delta \leq t \) and \(m, n \geq 0 \). We start from

\[
\gamma_{m,n}(t,t+\Delta) = \int_0^{t+\Delta} \int_0^{t+\Delta} (s \wedge u) \left[\varphi^m(t+\Delta-s) \varphi^n(t+\Delta-u) + \varphi^m(t-s) \varphi^n(t-u) - \varphi^m(t+\Delta-s) \varphi^n(t-u) - \varphi^m(t-s) \varphi^n(t+\Delta-u) \right] duds.
\]

Using another (independent) i.i.d. family \(Y_1, Y_2, \ldots \) of random variables with density \(\Lambda^{-1} \varphi \) and setting \(T_m = Y_1 + \cdots + Y_m \) (or \(T_m = 0 \) if \(m = 0 \)), we may write

\[
\gamma_{m,n}(t,t+\Delta) = \Lambda^{m+n} \mathbb{E} \left[(t+\Delta - T_m) + \wedge (t+\Delta - S_n) + + (t-T_m) + \wedge (t-S_n) + - (t+\Delta - T_m) + \wedge (t-S_n) + - (t-T_m) + \wedge (t+\Delta - S_n) + \right].
\]

This precisely rewrites \(\gamma_{m,n}(t,t+\Delta) = \Lambda^{m+n} \mathbb{E} [(t+\Delta - T_m \vee S_n) + - (t-T_m \wedge S_n) +] \), which implies that \(0 \leq \gamma_{m,n}(t,t+\Delta) \leq \Lambda^{m+n} \Delta \). We next introduce

\[
\delta_{m,n}(t,t+\Delta) = \Lambda^{m+n} \mathbb{E} [(t+\Delta - T_m \vee S_n) - (t-T_m \wedge S_n)],
\]

which is nothing but \(\delta_{m,n}(t,t+\Delta) = \Lambda^{m+n} (\Delta - \kappa_{m,n}) \), where \(\kappa_{m,n} = \mathbb{E} [|T_m - S_n|] \) obviously satisfies \(0 \leq \kappa_{m,n} \leq \kappa(m+n) \). Thus \(\gamma_{m,n}(t,t+\Delta) = \Lambda^{m+n} (\Delta - \kappa_{m,n}) + \epsilon_{m,n}(t,t+\Delta) \), where
\[\varepsilon_{m,n}(t, t + \Delta) = \gamma_{m,n}(t, t + \Delta) - \delta_{m,n}(t, t + \Delta). \]

Finally, it is clear that, since \(0 \leq \Delta \leq t \),
\[
|\varepsilon_{m,n}(t, t + \Delta)| \leq A^{m+n}(t + \Delta) \Pr(T_m \vee S_n \geq t + \Delta \text{ or } T_m \wedge S_n \geq t \text{ or } |T_m - S_n| \geq \Delta) \leq 2A^{m+n} \Pr(T_m \geq \Delta \text{ or } S_n \geq \Delta).
\]

This is, as usual, bounded by \(CA^{m+n}(m^q + n^q)\Delta^{-q} \).

4.3. Preliminary stochastic analysis. We handle once for all a number of useful computations concerning the processes introduced in Notation 9.

Lemma 16. We assume \(H(q) \) for some \(q \geq 1 \). Recall that \(\Omega^1_{N} \) and \(\ell_N \) were defined in Notation 12 and that all the processes below have been introduced in Notation 9.

(i) For any \(r \in [1, \infty] \), for all \(t \geq 0 \),
\[
1_{\Omega^1_{N}} \| \mathbb{E}_\theta[Z_t^N] \|_r \leq Ct \| 1_N \|_r.
\]

(ii) For any \(r \in [1, \infty] \), for all \(t \geq s \geq 0 \),
\[
1_{\Omega^5_{t}} \| \mathbb{E}_\theta[Z_t^N - Z_s^N] - \mu(t-s)\ell_n \|_r \leq C(1 \wedge s^{1-q})\| 1_N \|_r.
\]

(iii) For all \(t \geq s + 1 \geq 1 \),
\[
1_{\Omega^1_{1}} \sup_{i=1, \ldots, N} \mathbb{E}_\theta \left[(Z_t^N - Z_s^N)^2 + \sup_{[s, t]} |M_t^{i,N} - M_s^{i,N}|^4 \right] + 1_{\Omega^1_{1}} \mathbb{E}_\theta \left[(\bar{Z}_t^N - \bar{Z}_s^N)^2 \right] \leq C(t-s)^2.
\]

Proof. Recall (3), which asserts that \(\mathbb{E}_\theta[Z_t^N] = \mu \sum_{n \geq 0} \int_0^t s^q \varphi^n(t-s)ds \mathbb{A}_n^N 1_N \). Using that \(\int_0^t s^q \varphi^n(t-s)ds \leq t \Lambda^n \), we deduce that \(\| \mathbb{E}_\theta[Z_t^N] \|_r \leq \mu t \sum_{n \geq 0} \Lambda^n \| A_n^N \|_r \| 1_N \|_r \). This is clearly bounded, on \(\Omega^1_{N} \), by \(Ct \| 1_N \|_r \), which proves (i).

Using next Lemma 15-(i), \(\mathbb{E}_\theta[Z_t^N] = \mu \sum_{n \geq 0} \Lambda^n t - n \Lambda^n \kappa + \varepsilon_n(t) \mathbb{A}_n^N 1_N \), where \(0 \leq \varepsilon_n(t) \leq C n \Lambda^n (t^{1-q} \wedge 1) \). Hence
\[
\mathbb{E}_\theta[Z_t^N] - \mathbb{E}_\theta[Z_s^N] = \mu(t-s) \sum_{n \geq 0} \Lambda^n \mathbb{A}_n^N 1_N + \mu \sum_{n \geq 0} \varepsilon_n(t) - \varepsilon_n(s) \mathbb{A}_n^N 1_N.
\]

But \(\sum_{n \geq 0} \Lambda^n \mathbb{A}_n^N 1_N = Q_N 1_N = \ell_N \) on \(\Omega^1_{N} \). Thus, still on \(\Omega^1_{N} \), since \(s \leq t \) and \(q \geq 1 \),
\[
\| \mathbb{E}_\theta \left[Z_t^N - Z_s^N \right] - \mu(t-s)\ell_n \|_r \leq C(1 \wedge s^{1-q}) \sum_{n \geq 0} \Lambda^n \| A_n^N \|_r \| 1_N \|_r \leq C(1 \wedge s^{1-q}) \| 1_N \|_r.
\]

Since \([M^i,N, M^j,N] = Z_t^N \) by Remark 10, the Doob inequality implies that \(\mathbb{E}_\theta[\sup_{[s, t]} |M_t^{i,N} - M_s^{i,N}|^4] \leq C \mathbb{E}_\theta[(Z_t^N - Z_s^N)^2] \). Also, the Cauchy-Schwarz inequality tells us that \(\mathbb{E}_\theta[(Z_t^N - Z_s^N)^2] \leq (t-s)^2 \). Hence we just have to prove that \(\mathbb{E}_\theta[|Z_t^N - Z_s^N|^2] \leq C(t-s)^2 \). Recalling that \(Z_t^N = U_t^{i,N} + \mathbb{E}_\theta[Z_i^N] \), we have to show that, on \(\Omega^1_{N} \), (a) \((\mathbb{E}_\theta[Z_t^N] - \mathbb{E}_\theta[Z_s^N])^2 \leq C(t-s)^2 \) and (b) \((\mathbb{E}_\theta[U_t^{i,N} - U_s^{i,N}])^2 \leq C(t-s)^2 \).

To prove (a), we use (ii) with \(r = \infty \) and find that, on \(\Omega^1_{N} \), \(\mathbb{E}_\theta[Z_t^N] - \mathbb{E}_\theta[Z_s^N] \leq \mu(t-s)\ell_n \| 1_N \|_\infty \leq C(t-s) \), since \(\ell_n \) is bounded on \(\Omega^1_{N} \) and since \(t-s \geq 1 \) by assumption.
To prove (b), we use (4) to write \(U_{t}^{1,N} - U_{t}^{1,N} = \sum_{n \geq 0} \int_{0}^{t} \beta_n(s, t) \sum_{j=1}^{N} A_n(i, j) M_{s}^{k,N} dr\), where we have set \(\beta_n(s, t, r) = \varphi^n(t - r) - \varphi^n(s - r)\) as in Lemma 15. We deduce that

\[
E[(U_{t}^{1,N} - U_{t}^{1,N})^2] = \sum_{m,n \geq 0} \int_{0}^{t} \int_{0}^{t} \beta_m(s, t, u) \beta_n(s, t, v) \sum_{j,k=1}^{N} A_n(i, j) A_n(i, k) E\theta[M_{u}^{k,N} M_{v}^{k,N}] dudu.
\]

By Remark 10, \(E\theta[M_{u}^{k,N} M_{v}^{k,N}] = 1_{\{j=k\}} E\theta[Z_{u,v}^{j,N}]\). Using now (ii) with \(s = 0\) and \(r = \infty\), we see that \(x_{t}^{j,N} := E\theta[Z_{u,v}^{j,N}] - \mu t \ell_N(j)\) satisfies \(\sup_{t \geq 0, j=1,...,N} |x_{t}^{j,N}| \leq C\) on \(\Omega_{1,N}^{1}\). We thus write \(E\theta[(U_{t}^{1,N} - U_{t}^{1,N})^2] = I + J\), where

\[
I = \mu \sum_{m,n \geq 0} \int_{0}^{t} \int_{0}^{t} \beta_m(s, t, u) \beta_n(s, t, v) \sum_{j=1}^{N} A_n(i, j) A_n(i, j)(u \wedge v) \ell_N(j) dudu,
\]

\[
J = \sum_{m,n \geq 0} \int_{0}^{t} \int_{0}^{t} \beta_m(s, t, u) \beta_n(s, t, v) \sum_{j=1}^{N} A_n(i, j) A_n(i, j) x_{u,v}^{j,N} dudu.
\]

First, using only that \(x_{t}^{j,N}\) is uniformly bounded on \(\Omega_{1,N}^{1}\), and that \(\int_{0}^{t} |\beta_m(s, t, u)| dudu \leq 2A^m\), we find \(|J| \leq C \sum_{m,n \geq 0} A^{m+n} \sum_{j=1}^{N} A_n(i, j) A_n(i, j) = C \sum_{j=1}^{N} (Q_N(i, j))^2\) on \(\Omega_{1,N}^{1}\), whence \(|J| \leq C \sum_{j=1}^{N} (1_{i=j} + N^{-1})^2\) by (8). We conclude that \(|J| \leq C \leq C(t - s)^2\). Next, we realize that, with the notation of Lemma 15-(iii),

\[
I = \mu \sum_{m,n \geq 0} \gamma_{m,n}(s, t) \sum_{j=1}^{N} A_n(i, j) A_n(i, j) \ell_N(j).
\]

But we know that \(0 \leq \gamma_{m,n}(s, t) \leq A^{m+n}(t - s)\). Hence \(I \leq \mu(t - s) \sum_{j=1}^{N} (Q_N(i, j))^2 \ell_N(j) \leq C(t - s)\), since \(\ell_N\) is bounded on \(\Omega_{1,N}^{1}\) and since, as already seen, \(\sum_{j=1}^{N} (Q_N(i, j))^2\) is also bounded on \(\Omega_{1,N}^{1}\). We conclude that \(E\theta[(U_{t}^{1,N} - U_{t}^{1,N})^2] \leq C(t - s)^2\) on \(\Omega_{1,N}^{1}\), as desired.

4.4. First estimator. We recall that \(\mathcal{E}_t^N = (\overline{Z}_t^N - \overline{Z}_t^N) / t\), that the matrices \(A_N\) and \(Q_N\) and the event \(\Omega_{1,N}^{1}\) were defined in Notation 12, as well as \(\ell_N(i) = \sum_{j=1}^{N} Q_N(i, j)\) and \(\ell_N = N^{-1} \sum_{i=1}^{N} \ell_N(i)\). The goal of this subsection is to establish the following estimate.

Proposition 17. Assume \(H(q)\) for some \(q \geq 1\). Then for \(t \geq 1\),

\[
1_{\Omega_{1,N}^{1}} E\theta\left[|\mathcal{E}_t^N - \mu \ell_N|^2\right] \leq C \left(\frac{1}{t^q} + \frac{1}{N^q}\right).
\]

We start with the following lemma (recall that \(\overline{U}_t^N\) was defined in Notation 9).

Lemma 18. Assume \(H(q)\) for some \(q \geq 1\). Then on \(\Omega_{1,N}^{1}\), for \(t \geq 1\),

\[
E\theta[|\mathcal{E}_t^N - \mu \ell_N|] \leq Ct^{-q} \quad \text{and} \quad E\theta[|\overline{U}_t^N|^2] \leq Ct^{-N^2}.
\]

Proof. Applying Lemma 16-(ii) with \(r = 1\), we immediately find, on \(\Omega_{1,N}^{1}\),

\[
E\theta[|\mathcal{E}_t^N - \mu \ell_N|] \leq N^{-1} \left\|E\theta\left[\frac{Z_t^N - Z_t^N}{t}\right] - \mu \ell_N\right\|_1 \leq CN^{-1}t^{-q} \|1_N\|_1 = Ct^{-q}.
\]

Next, we deduce from (4) that \(\overline{U}_t^N = N^{-1} \sum_{n \geq 0} \int_{0}^{t} \varphi^n(t - s) \sum_{i,j=1}^{N} A_n(i, j) M_{s}^{k,N} ds\), whence

\[
E\theta[(\overline{U}_t^N)^2]^{1/2} \leq \sum_{n \geq 0} N^{-1} \int_{0}^{t} \varphi^n(t - s) E\theta\left[\left(\sum_{i,j=1}^{N} A_n(i, j) M_{s}^{k,N}\right)^2\right]^{1/2} ds
\]

Since \(\varphi^n(t - s) \sum_{i,j=1}^{N} A_n(i, j) M_{s}^{k,N} ds\) is uniformly bounded on \(\Omega_{1,N}^{1}\), we conclude that

\[
E\theta[(\overline{U}_t^N)^2]^{1/2} \leq C t^{-N^2}.
\]
Proposition 19. Assume \(\ell_N \). Then the proposition immediately follows from Lemma 18.

We know from Lemma 16-(i) with \(r = 1 \) that \(\sum_{j=1}^{N} E_\theta[Z_{s_i}^j] \leq C N s \) on \(\Omega^1_N \). Hence, still on \(\Omega^1_N \),

\[
E_\theta[|\bar{U}_t^N|^2]^{1/2} \leq \frac{C}{N} \sum_{n \geq 0} \|A_N\|^2 \int_0^t \sqrt{N} s \rho^2(t - s) ds \leq \frac{C t^{1/2}}{N^{1/2}} \sum_{n \geq 0} \|A_N\|^2 \leq \frac{C t^{1/2}}{N^{1/2}}
\]
as desired.

We can now give the

Proof of Proposition 17. It suffices to write

\[
E_\theta\left[|\mathcal{E}_t^N - \mu \bar{\ell}_N|^2\right] \leq 2 E_\theta\left[|\mathcal{E}_t^N - E_\theta[\mathcal{E}_t^N]|^2\right] + 2 \left|E_\theta[\mathcal{E}_t^N] - \mu \bar{\ell}_N\right|^2
\]
and to observe that \(|\mathcal{E}_t^N - E_\theta[\mathcal{E}_t^N]| = |\bar{U}_t^N - \bar{U}_t^N| / t \leq |\bar{U}_t^N| / t + |\bar{U}_t^N| / t \), whence finally

\[
E_\theta\left[|\mathcal{E}_t^N - \mu \bar{\ell}_N|^2\right] \leq \frac{4}{t^2} \left(E_\theta[|\bar{U}_t^N|^2] + E_\theta[|\bar{U}_t^N|^2] \right) + 2 \left|E_\theta[\mathcal{E}_t^N] - \mu \bar{\ell}_N\right|^2.
\]

Then the proposition immediately follows from Lemma 18.

\[\square\]

4.5. Second estimator. We recall that \(\mathcal{V}_t^N = \sum_{i=1}^{N} [(Z_{2i}^i - Z_{1i}^i)^2 / t - \mathcal{E}_t^N] - N \mathcal{E}_t^N / t \) where \(\mathcal{E}_t^N = (\bar{Z}_{2i}^N - \bar{Z}_{1i}^N) / t \), that the matrices \(A_N \) and \(Q_N \) and the event \(\Omega^1_N \) were defined in Notation 12, as well as \(\ell_N(i) = \sum_{j=1}^{N} Q_N(i, j) \) and \(\bar{\ell}_N = N^{-1} \sum_{i=1}^{N} \ell_N(i) \). We also introduce \(\mathcal{V}_\infty^N = \mu^2 \sum_{i=1}^{N} [\ell_N(i) - \bar{\ell}_N]^2 \).

Proposition 19. Assume \(H(q) \) for some \(q \geq 1 \). Then for \(t \geq 1 \), a.s.,

\[
1_{\Omega^1_N} E_\theta\left[|\mathcal{V}_t^N - \mathcal{V}_\infty^N|\right] \leq C \left(1 + \sum_{i=1}^{N} \left(\ell_N(i) - \bar{\ell}_N\right)^2 \right)^{1/2} \left(N t^{1/2} + \sqrt{N} t + \frac{1}{\sqrt{t}} \right).
\]

Observe that the term \(\sum_{i=1}^{N} [\ell_N(i) - \bar{\ell}_N]^2 \) will not cause any problem, since its expectation (restricted to \(\Omega^1_N \)) is uniformly bounded, see Proposition 14.

We write \(|\mathcal{V}_t^N - \mathcal{V}_\infty^N| \leq \Delta_t^{N,1} + \Delta_t^{N,2} + \Delta_t^{N,3} \), where

\[
\Delta_t^{N,1} = \left| \sum_{i=1}^{N} ([Z_{2i}^i - Z_{1i}^i]^2 / t - \mathcal{E}_t^N)^2 - \sum_{i=1}^{N} ([Z_{2i}^i - Z_{1i}^i]^2 / t - \mu \bar{\ell}_N)^2 \right|
\]
\[
\Delta_t^{N,2} = \left| \sum_{i=1}^{N} ([Z_{2i}^i - Z_{1i}^i]^2 / t - \mu \bar{\ell}_N(i))^2 - N \mathcal{E}_t^N / t \right|
\]
\[
\Delta_t^{N,3} = 2 \left| \sum_{i=1}^{N} ([Z_{2i}^i - Z_{1i}^i]^2 / t - \mu \bar{\ell}_N(i)) [\mu \bar{\ell}_N(i) - \mu \bar{\ell}_N] \right|
\]
We next write $\Delta_i^{N,2} \leq \Delta_i^{N,21} + \Delta_i^{N,22} + \Delta_i^{N,23}$, where

$$
\Delta_i^{N,21} = \sum_{i=1}^{N} \left[(Z_{2i}^{i,N} - Z_t^{i,N})/t - E_{\theta}[Z_{2i}^{i,N} - Z_t^{i,N})/t] \right]^2 - NE_i^N/t, \\
\Delta_i^{N,22} = \sum_{i=1}^{N} \left[E_{\theta}[Z_{2i}^{i,N} - Z_t^{i,N})/t] - \mu_{\ell,N}(i) \right]^2, \\
\Delta_i^{N,23} = 2 \left| \sum_{i=1}^{N} (Z_{2i}^{i,N} - Z_t^{i,N})/t - E_{\theta}[(Z_{2i}^{i,N} - Z_t^{i,N})/t] \right| \left[E_{\theta}[(Z_{2i}^{i,N} - Z_t^{i,N})/t] - \mu_{\ell,N}(i) \right].
$$

We will also need to write, recalling that $U_t^{i,N} = Z_t^{i,N} - E_{\theta}[Z_t^{i,N}]$,

$$
\Delta_i^{N,21} = \sum_{i=1}^{N} \left[(U_{2i}^{i,N} - U_t^{i,N})/t \right]^2 - NE_i^N/t \leq \Delta_i^{N,211} + \Delta_i^{N,212} + \Delta_i^{N,213},
$$

where

$$
\Delta_i^{N,211} = \sum_{i=1}^{N} \left\{ \left[(U_{2i}^{i,N} - U_t^{i,N})/t \right]^2 - E_{\theta} \left[\left((U_{2i}^{i,N} - U_t^{i,N})/t \right)^2 \right] \right\}, \\
\Delta_i^{N,212} = \sum_{i=1}^{N} E_{\theta} \left[\left[(U_{2i}^{i,N} - U_t^{i,N})/t \right]^2 - E_{\theta} [NE_i^N/t] \right], \\
\Delta_i^{N,213} = \left| NE_i^N/t - E_{\theta} [NE_i^N/t] \right|.
$$

Finally, we will use that $\Delta_i^{N,3} \leq \Delta_i^{N,31} + \Delta_i^{N,32}$, where

$$
\Delta_i^{N,31} = 2 \left| \sum_{i=1}^{N} (Z_{2i}^{i,N} - Z_t^{i,N})/t - E_{\theta}[(Z_{2i}^{i,N} - Z_t^{i,N})/t] \right| \left[\mu_{\ell,N}(i) - \mu_{\ell,N} \right], \\
\Delta_i^{N,32} = 2 \left| \sum_{i=1}^{N} E_{\theta}[(Z_{2i}^{i,N} - Z_t^{i,N})/t] - \mu_{\ell,N}(i) \right| \left[\mu_{\ell,N}(i) - \mu_{\ell,N} \right].
$$

To summarize, we have to bound $\Delta_i^{N,1}$, $\Delta_i^{N,211}$, $\Delta_i^{N,212}$, $\Delta_i^{N,213}$, $\Delta_i^{N,22}$, $\Delta_i^{N,23}$, $\Delta_i^{N,31}$ and $\Delta_i^{N,32}$. Only the term $\Delta_i^{N,211}$ is really difficult.

In the following lemma, we treat the easy terms. We do not try to be optimal when not useful: for example in (iv) below, some sharper estimate could probably be obtained with more work, but since we already have a term in $N^{1/2}t^{-1}$ (see Lemma 24), this would be useless. We also recall that we do not really try to optimize the dependence in q: it is likely that t^{-q} could be replaced by t^{-2q} here and there.

Lemma 20. Assume $H(q)$ for some $q \geq 1$. Then a.s. on Ω_N^t, for $t \geq 1$,

(i) $E_{\theta}[\Delta_i^{N,1}] \leq C(Nt^{-2q} + t^{-1})$,
(ii) $E_{\theta}[\Delta_i^{N,22}] \leq C t^{-2q}$,
(iii) $E_{\theta}[\Delta_i^{N,23}] \leq C N t^{-q}$,
(iv) $E_{\theta}[\Delta_i^{N,213}] \leq C N^{1/2}t^{-3/2}$,
(v) $E_{\theta}[\Delta_i^{N,32}] \leq C N t^{-q}$.

Proof. We work on Ω_N^1 during the whole proof.

Using that $\mathcal{E}_N^t = N^{-1} \sum_{i=1}^N [(Z_{2i}^N - Z_i^N)/t]$, one easily checks that $\Delta_t^{N,1} = N|\mathcal{E}_N^t - \mu\bar{\ell}_N|^2$. Thus point (i) follows from Proposition 17.

Next, we observe that $\Delta_t^{N,22} = \|E_0[(Z_{2i}^N - Z_i^N)/t] - \mu\ell_N\|^2$. Applying Lemma 16-(ii) with $r = 2$, we conclude that indeed, $\Delta_t^{N,22} \leq Ct^{-2q}\|1_N\|^2 = CNt^{-2q}$.

We write

$$\Delta_t^{N,23} \leq 2\left\| (Z_{2i}^N - Z_i^N)/t - E_0[(Z_{2i}^N - Z_i^N)/t] \right\|_1 \left\| E_0[(Z_{2i}^N - Z_i^N)/t] - \mu\ell_N \right\|_\infty.$$

Applying Lemma 16-(ii) with $r = \infty$, we deduce that $\|E_0[(Z_{2i}^N - Z_i^N)/t] - \mu\ell_N\|_\infty \leq Ct^{-q}$. Lemma 16-(i) with $r = 1$ gives us that $E_0[|E_0[(Z_{2i}^N - Z_i^N)/t] - E_0[(Z_{2i}^N - Z_i^N)/t]_{1_N}|] \leq 2t^{-1}\|E_0[Z_{2i}^N + Z_i^N]\|_1 \leq CN$.

We thus find that indeed, $E_0[\Delta_t^{N,23}] \leq CNt^{-q}$.

Since $\Delta_t^{N,213} = (N/t)[E_0[\mathcal{E}_N^t] - E_0[\mathcal{E}_N^t]] = Nt^{-2}[\bar{\ell}_N^t - \bar{\ell}_N^t] \leq Nt^{-2}[|\bar{U}_t^N| + |\bar{U}_t^N|]$, we deduce from Lemma 18 that $E_0[\Delta_t^{N,213}] \leq CNt^{-2}\sqrt{t/N} = CN^{1/2t-3/2}$.

Finally, starting from $\Delta_t^{N,32} \leq 2\mu E_0[(Z_{2i}^N - Z_i^N)/t] - \mu\ell_N\|_\infty\|\ell_N - \bar{\ell}_N1_N\|_1$ and using that, as already seen when studying $\Delta_t^{N,23}$, $|E_0[(Z_{2i}^N - Z_i^N)/t] - \mu\ell_N\|_\infty \leq Ct^{-q}$, we conclude that $\Delta_t^{N,32} \leq Ct^{-q}\|\ell_N - \bar{\ell}_N1_N\|_1 \leq CNt^{-q}$, since ℓ_N is bounded (see (7)) on Ω_N^1.

Next, we treat the term $\Delta_t^{N,212}$.

Lemma 21. Assume $H(q)$ for some $q \geq 1$. Then a.s. on Ω_N^1, for $t \geq 1$, $E_0[\Delta_t^{N,212}] \leq Ct^{-1}$.

Proof. We work on Ω_N^1. Recalling that $N\mathcal{E}_N^t = t^{-1} \sum_{i=1}^N (Z_{2i}^i - Z_i^N)$, we may write $E_0[\Delta_t^{N,212}] \leq t^{-2} \sum_{i=1}^N a_i$, where $a_i = |E_0[(Ui_{2i}^N - Ui_{2i}^N)^2 - (Ui_{2i}^N - Z_{2i}^N)]|$. Now we infer from (4) that $Ui_{2i}^N = M_i^N + \sum_{n \geq 1} \int_0^t \varphi_n(t-s) \sum_{j=1}^N A_N^a(i,j)M_s^{21}ds$, so that $Ui_{2i}^N - Ui_{2i}^N = M_i^N - M_i^N + R_i^N$, where

$$R_i^N = \sum_{n \geq 1} \int_0^t \beta_n(t,2s) \sum_{j=1}^N A_N^a(i,j)M_s^{21}ds.$$

We have set $\beta_n(t,2s) = \varphi_n^a(2t-s) - \varphi_n^a(t-s)$ as in Lemma 15 and the only thing we will use is that $\int_0^{2t} |\beta_n(t,2s)| ds \leq 2\Lambda$. Recalling that M_i^N is a martingale with quadratic variation $[M_i^N, M_i^N]_t = Z_i^N$, see Remark 10, we deduce that $E_0[|M_i^N - M_i^N|^2] = E_0[Z_i^N - Z_i^N]$. Hence

$$a_i = E_0[(R_i^N)^2] + 2E_0[(M_i^N - M_i^N)R_i^N] = b_i + d_i,$$

the last equality standing for a definition. We first write

$$b_i = \sum_{m,n \geq 1} \int_0^{2t} \int_0^{2t} \beta_m(t,2u) \beta_n(t,2s) A_N^a(i,j)A_N^a(i,k)E_0[M_s^{21}M_s^{kN}]duds.$$

But we know that $E_0[M_s^{21}M_s^{kN}] = 1_{\left\{i=\hat{k}\right\}} E_0[Z_s^{2N}]$ by Remark 10 and that $E_0[Z_s^{2N}] \leq Ct$ on Ω_N^1 by Lemma 16-(i) (with $r = \infty$). Hence

$$b_i \leq Ct \sum_{m,n \geq 1} \Lambda^{n+m} \sum_{j=1}^N A_N^a(i,j)A_N^a(i,j) = Ct \sum_{j=1}^N \left(\sum_{n \geq 1} \Lambda^n A_N^a(i,j) \right)^2.$$

But $\sum_{n \geq 1} \Lambda^n A_N^a(i,j) = Q_N(i,j) - 1_{\{i=j\}} \leq CN^{-1}$ on Ω_N^1 by (8), so that $b_i \leq CtN^{-1}$.

Next, we start from
\[d_i = 2 \sum_{n \geq 1} \int_0^{2t} \beta_n(t, 2t, s) \sum_{j=1}^N A^\beta_N(i, j) \mathbb{E}_\theta[(M_{2t}^i - M_t^i)M_s^i]ds. \]

As previously, we see that \(\mathbb{E}_\theta[(M_{2t}^i - M_t^i)M_s^i] = 0 \) if \(i \neq j \) and that \(\mathbb{E}_\theta[(M_{2t}^i - M_t^i)M_s^i] = \mathbb{E}_\theta[Z_{2t \wedge s} - Z_t^i] \leq Ct \) on \(\Omega_1^N \) (by Lemma 16-(i)), whence
\[d_i \leq Ct \sum_{n \geq 1} A^\beta_N(i, i) = Ct(Q_N(i, i) - 1) \leq CtN^{-1} \]
on \(\Omega_1^N \) by (8) again. Finally, \(a_i \leq CtN^{-1} \), so that \(\mathbb{E}_\theta[\Delta_t^{k_i,212}] \leq t^{-2} \sum_{i=1}^N a_i \leq Ct^{-1} \) on \(\Omega_1^N \). \(\square \)

We next compute some covariances in the following tedious lemma.

Lemma 22. Assume \(H(q) \) for some \(q \geq 1 \). Then a.s., on \(\Omega_1^N \), for all \(t \geq 1 \), all \(k, l, a, b \in \{1, \ldots, N\} \), all \(r, s, u, v \in [0, t] \),

(i) \(\text{Cov}_\theta(Z_{r}^{k,N}, Z_{r}^{l,N}) = \text{Cov}_\theta(U_{r}^{k,N}, U_{r}^{l,N}) \leq Ct(N^{-1} + 1\{k\neq l\}) \),

(ii) \(\text{Cov}_\theta(Z_{r}^{k,N}, M_{r}^{l,N}) = \text{Cov}_\theta(U_{r}^{k,N}, M_{r}^{l,N}) \leq Ct(N^{-1} + 1\{k\neq l\}) \),

(iii) \(\text{Cov}_\theta(Z_{r}^{k,N}, \int_0^s M_{r}^{l,N}dM_{r}^{l,N}) = \text{Cov}_\theta(U_{r}^{k,N}, \int_0^s M_{r}^{l,N}dM_{r}^{l,N}) \leq Ct^{3/2}(N^{-1} + 1\{k\neq l\}) \),

(iv) \(\mathbb{E}_\theta[M_{r}^{k,N}M_{r}^{l,N}M_{s}^{l,N}] \leq CN^{-1}t \text{ if } \#\{k, l\} = 2 \),

(v) \(\text{Cov}_\theta(M_{r}^{k,N}, M_{r}^{l,N}M_{s}^{l,N}M_{v}^{b,N}) = 0 \text{ if } \#\{k, l, a, b\} = 4 \),

(vi) \(\text{Cov}_\theta(M_{r}^{k,N}M_{s}^{l,N}, M_{u}^{a,N}M_{v}^{b,N}) \leq CN^{-2}t \text{ if } \#\{k, a, b\} = 3 \),

(vii) \(\text{Cov}_\theta(M_{r}^{k,N}M_{s}^{l,N}, M_{u}^{a,N}M_{v}^{b,N}) \leq CN^{-1}t^{3/2} \text{ if } \#\{k, a\} = 2 \),

(viii) \(\text{Cov}_\theta(M_{r}^{k,N}M_{s}^{l,N}, M_{u}^{a,N}M_{v}^{b,N}) \leq Ct^2 \text{ without condition.} \)

Proof. We work on \(\Omega_1^N \) and start with point (i). First, it is clear, since \(U_{r}^{k,N} = Z_{r}^{k,N} - \mathbb{E}_\theta[Z_{r}^{k,N}] \), that \(\text{Cov}_\theta(Z_{r}^{k,N}, Z_{r}^{l,N}) = \text{Cov}_\theta(U_{r}^{k,N}, U_{r}^{l,N}) \). Then we infer from (4) that
\[\text{Cov}_\theta(U_{r}^{k,N}, U_{r}^{l,N}) = \sum_{m, n \geq 0} \int_0^t \int_0^s \varphi^m(r-x)\varphi^n(s-y) \sum_{i=1}^N \sum_{j=1}^N A^\beta_N(k, i)A^\beta_N(l, j)\text{Cov}_\theta(M_{x}^{i,N}, M_{y}^{j,N})dx. \]

But we know (see Remark 10) that \(\text{Cov}_\theta(M_{x}^{i,N}, M_{y}^{j,N}) = 1\{i=j\}\mathbb{E}_\theta[Z_{x \wedge y}^{i,N}] \leq Ct\{i=j\}t \) by Lemma 16-(i) (with \(r = \infty \)). Thus
\[|\text{Cov}_\theta(U_{r}^{k,N}, U_{r}^{l,N})| \leq Ct \sum_{m, n \geq 0} \sum_{i=1}^N A^\beta_N(k, i)A^\beta_N(l, i) = Ct \sum_{i=1}^N Q_N(k, i)Q_N(l, i). \]

Recalling (8), \(\sum_{i=1}^N Q_N(k, i)Q_N(l, i) \leq C \sum_{i=1}^N (N^{-1} + 1\{k\neq l\})(N^{-1} + 1\{i\neq l\}) \leq C(N^{-1} + 1\{k\neq l\}). \)

Point (i) is checked.

For point (ii), we again have \(\text{Cov}_\theta(Z_{r}^{k,N}, M_{r}^{l,N}) = \text{Cov}_\theta(U_{r}^{k,N}, M_{r}^{l,N}) \) and, using again (4),
\[\text{Cov}_\theta(U_{r}^{k,N}, M_{r}^{l,N}) = \sum_{n \geq 0} \int_0^t \varphi^n(r-x) \sum_{i=1}^N A^\beta_N(k, i)\text{Cov}_\theta(M_{x}^{i,N}, M_{y}^{l,N})dx. \]
Since $|\text{Cov}_\theta(M_x^{i,N}, M_s^{i,N})| \leq C_1(t)$ as in (i), we conclude that

$$|\text{Cov}_\theta(U_r^{i,N}, M_s^{i,N})| \leq C t \sum_{n \geq 0} \Lambda^n A^n_N (k, l) = CtQ_N(k, l) \leq Ct(N^{-1} + 1_{k=l}).$$

Point (iii) is checked similarly as (ii), provided we verify that $|\text{Cov}_\theta(M_x^{i,N}, \int_0^b M_r^{i,N} dM_r^{i,N})| \leq C_1t^{3/2} l$. This is obvious if $i \neq l$ because the martingales $M^{i,N}$ and $\int_0^b M_r^{i,N} dM_r^{i,N}$ are orthogonal, and relies on the fact, if $i = l$, that

$$|\text{Cov}_\theta(M_x^{i,N}, \int_0^b M_r^{i,N} dM_r^{i,N})| \leq \text{E}_\theta ||M_x^{i,N}||^2 - \text{E}_\theta \left[\int_0^b M_r^{i,N} dM_r^{i,N} \right]^2 \leq Ct^{3/2} l.$$

The last inequality uses that $\text{E}_\theta[M_x^{i,N}^2] = \text{E}_\theta[Z_x^{i,N}^2] \leq Ct$ by Remark 10 and Lemma 16-(i) and that $\text{E}_\theta[\int_0^b M_r^{i,N} dM_r^{i,N}] = 2Ct^2 l$. Indeed, we have $\int_0^b M_r^{i,N} dM_r^{i,N} = \int_0^b (M^{i,N})^2 dZ_x^{i,N} \leq (M^{i,N})^2 Z_x^{i,N}$, whence

$$\text{E}_\theta \left[\int_0^b M_r^{i,N} dM_r^{i,N} \right]^2 \leq \text{E}_\theta \left[(M^{i,N}_x)^2 Z_x^{i,N} \right] \leq \text{E}_\theta \left[(M^{i,N}_x)^4 \right] / \text{E}_\theta \left[(Z_x^{i,N})^2 \right] / 2,$$

which is bounded by $Ct^2 l$ by Lemma 16-(iii).

For point (iv), we assume e.g. that $r \leq s$ and first note that

$$\text{E}_\theta[M_r^{k,N} M_s^{k,N} M_u^{k,N} M_v^{k,N}] = \text{E}_\theta[M_r^{k,N} \text{E}_\theta[M_s^{k,N} M_u^{k,N} | \mathcal{F}_r]] = \text{E}_\theta[(M_r^{k,N})^2 M_u^{k,N}]$$

because the martingales $M^{k,N}$ and $M^{l,N}$ are orthogonal. Since $[M_r^{k,N}, M_s^{k,N}] = Z_r^{k,N}$, it holds that $(M_r^{k,N})^2 = 2 \int_0^r M_r^{k,N} dM_r^{k,N} + Z_r^{k,N}$. Using that $\int_0^r M_r^{k,N} dM_r^{k,N}$ and $M_r^{l,N}$ are orthogonal, we conclude that $\text{E}_\theta[(M_r^{k,N})^2 M_u^{l,N}] = \text{E}_\theta[Z_r^{k,N} M_u^{l,N}] = \text{Cov}_\theta(Z_r^{k,N}, M_r^{l,N})$. Since $k \neq l$, we conclude using point (ii).

Point (v) is obvious, since when k, l, a, b are pairwise different, the martingales $M^{k,N}$, $M^{l,N}$, $M^{a,N}$ and $M^{b,N}$ are orthogonal.

Point (vi) is harder. Recall that $\# \{k, a, b\} = 3$, so that clearly, $\text{Cov}_\theta(M_r^{k,N} M_s^{k,N}, M_u^{a,N} M_v^{b,N}) = \text{E}_\theta[M_r^{k,N} M_s^{k,N} M_u^{a,N} M_v^{b,N}]$. We assume e.g. that $r \leq s$ and we observe that

$$\text{E}_\theta[M_r^{k,N} M_s^{k,N} M_u^{a,N} M_v^{b,N}] = \text{E}_\theta[M_r^{k,N} \text{E}_\theta[M_s^{k,N} M_u^{a,N} M_v^{b,N} | \mathcal{F}_r]] = \text{E}_\theta[(M_r^{k,N})^2 M_u^{a,N} M_v^{b,N}]$$

because $M_r^{k,N}$, $M_s^{k,N}$ and $M_r^{b,N}$ are orthogonal. We thus have to prove that for all $r, u, v \in [0, t]$ with $u, v \leq r$, $|\text{E}_\theta[(M_r^{k,N})^2 M_u^{a,N} M_v^{b,N}]| \leq CN^{-2} t$. We write $(M_r^{k,N})^2 = 2 \int_0^r M_r^{k,N} dM_r^{k,N} + Z_r^{k,N}$ as in the proof of (iv). The three martingales $\int_0^r M_r^{k,N} dM_r^{k,N}$, $M_u^{a,N}$ and $M_v^{b,N}$ being orthogonal, we find $\text{E}_\theta[(M_r^{k,N})^2 M_u^{a,N} M_v^{b,N}] = \text{E}_\theta[Z_r^{k,N} M_u^{a,N} M_v^{b,N}] = \text{E}_\theta[U_r^{k,N} M_u^{a,N} M_v^{b,N}]$. We next write, starting again from (4),

$$\text{E}_\theta[U_r^{k,N} M_u^{a,N} M_v^{b,N}] = \sum_{n \geq 0} \int_0^r \varphi^n (r - x) \sum_{j=1}^N A^n_N (k, j) \text{E}_\theta[M_x^{j,N} M_u^{a,N} M_v^{b,N}] dx.$$
For (vii), we assume e.g. that \(r \leq s \) and \(u \leq v \) and we recall that \(k \neq a \). We have
\[
\text{Cov}_\theta (M_r^{k,N} M_s^{k,N}, M_u^{a,N} M_v^{a,N}) \\
= \text{Cov}_\theta (M_s^{k,N})^2, (M_u^{a,N})^2 + \text{Cov}_\theta (M_s^{k,N} (M_r^{k,N} - M_t^{k,N}), (M_u^{a,N})^2) \\
+ \text{Cov}_\theta ((M_r^{k,N})^2, M_u^{a,N} (M_v^{a,N} - M_u^{a,N})) + \text{Cov}_\theta (M_r^{k,N} (M_r^{k,N} - M_t^{k,N}), M_u^{a,N} (M_v^{a,N} - M_u^{a,N})) \\
= I + J + K + L.
\]
First, \(L = 0 \). Indeed, assuming e.g. that \(r \geq u \), we have
\[
L = \text{E}_\theta (M_r^{k,N} (M_r^{k,N} - M_r^{k,N}) M_u^{a,N} (M_v^{a,N} - M_u^{a,N}) + M_r^{k,N} (M_r^{k,N} + M_r^{k,N} - M_u^{a,N})) \\
= \text{E}_\theta (M_r^{k,N} M_u^{a,N} \text{E}_\theta [(M_s^{k,N} - M_r^{k,N})(M_v^{a,N} - M_u^{a,N}) | \mathcal{F}_r]) \\
+ \text{E}_\theta (M_r^{k,N} M_u^{a,N} (M_r^{k,N} - M_u^{a,N}) \text{E}_\theta [M_s^{k,N} - M_r^{k,N} | \mathcal{F}_r])
\]
and in both terms, the conditional expectation vanishes. Next, we write as usual \((M_r^{k,N})^2 = 2 \int_0^T M_r^{k,N} dM_r^{k,N} + Z_r^{k,N}\) and \((M_u^{a,N})^2 = 2 \int_0^T M_u^{a,N} dM_u^{a,N} + Z_u^{a,N}\). By orthogonality of the martingales \(\int_0^T M_r^{k,N} dM_r^{k,N} \) and \(\int_0^T M_u^{a,N} dM_u^{a,N} \), we find
\[
I = \text{Cov}_\theta (Z_{r-N}^{k,N}, Z_{u-N}^{a,N}) + 2 \text{Cov}_\theta (Z_{r-N}^{k,N}, \int_0^T M_a^{a,N} dM_{r-N}^{a,N}) + 2 \text{Cov}_\theta \left(\int_0^T M_r^{k,N} dM_r^{k,N}, Z_{u-N}^{a,N} \right).
\]
We deduce from points (i) and (iii), since \(k \neq a \), that \(|I| \leq C (N^{-1} t + N^{-1} t^{3/2}) \leq C N^{-1} t^{3/2} \). We now treat \(K \). It vanishes if \(u \geq r \), because \(\text{E}_\theta [M_u^{a,N} - M_u^{a,N} | \mathcal{F}_u] = 0 \). We thus assume that \(u < r \). We write as usual \((M_r^{k,N})^2 = (M_r^{k,N})^2 + 2 \int_0^r M_r^{k,N} dM_r^{k,N} + Z_r^{k,N} - Z_r^{k,N}\) and
\[
K = \text{E}_\theta ([M_r^{k,N})^2 M_u^{a,N} (M_v^{a,N} - M_u^{a,N})] + 2 \text{E}_\theta \left[\left(\int_0^T M_r^{k,N} dM_r^{k,N} \right) M_u^{a,N} (M_v^{a,N} - M_u^{a,N}) \right] \\
+ \text{E}_\theta ([Z_r^{k,N} - Z_r^{k,N}) M_u^{a,N} (M_v^{a,N} - M_u^{a,N})]
\]
The first term vanishes (because \(\text{E}_\theta [M_u^{a,N} - M_u^{a,N} | \mathcal{F}_u] = 0 \), as well as the second one (because \(\text{E}_\theta [\int_0^T M_r^{k,N} dM_r^{k,N}] (M_v^{a,N} - M_u^{a,N}) | \mathcal{F}_u] = 0 \) by orthogonality of the involved martingales). Consequently,
\[
K = \text{E}_\theta ([Z_r^{k,N} - Z_r^{k,N}) M_u^{a,N} (M_v^{a,N} - M_u^{a,N})] = \text{E}_\theta ([U_r^{k,N} - U_r^{k,N}) M_u^{a,N} (M_v^{a,N} - M_u^{a,N})].
\]
Using (4) and recalling that \(\beta_a(u, v, x) = \varphi^\ast (r - x) - \varphi^\ast(u - x) \), we find
\[
K = \sum_{n \geq 0} \int_0^r \beta_a(u, v, x) \sum_{j=1}^N A_{N}^{a}(k, j) \text{E}_\theta [M_r^{k,N} M_u^{a,N} (M_v^{a,N} - M_u^{a,N})] dx.
\]
But \(|\text{E}_\theta [M_r^{k,N} M_u^{a,N} (M_v^{a,N} - M_u^{a,N})]| \leq CN^{-1} t \) if \(a \neq j \) by (iv), while \(|\text{E}_\theta [M_r^{k,N} M_u^{a,N} (M_v^{a,N} - M_u^{a,N})]| \leq C t^{3/2} \) if \(a = j \) by Lemma 16-(iii). Thus
\[
|K| \leq C \sum_{n \geq 0} N^n [A_n^{a}(k, a)t^{3/2} + \sum_{j=1}^N A_n^{a}(k, j)N^{-1}] \leq C \left[Q_N(k, a)t^{3/2} + N^{-1} \sum_{j=1}^N Q_N(k, j) \right].
\]
But \(k \neq a \) implies that \(Q_N(k, a) \leq CN^{-1} \) by (8), while \(N^{-1} \sum_{j=1}^N Q_N(k, j) \leq C N^{-1} ||Q_N||_\infty \leq CN^{-1} \). As a conclusion, \(|K| \leq CN^{-1} t^{3/2} + t \leq CN^{-1} t^{3/2} \). Of course, \(J \) is treated similarly, and this completes the proof of point (vii).

Point (viii) is obvious: it suffices to use the H"older inequality to find
\[
|\text{Cov}_\theta (M_s^{k,N} M_s^{k,N}, M_u^{a,N} M_v^{a,N})| \leq \text{E}_\theta [(M_s^{k,N})^4]^{1/4} \text{E}_\theta [(M_u^{a,N})^4]^{1/4} \text{E}_\theta [(M_v^{a,N})^4]^{1/4} \text{E}_\theta [(M_u^{a,N})^4]^{1/4} \text{E}_\theta [(M_v^{a,N})^4]^{1/4},
\]
which is bounded by Ct^2 by Lemma 16-(iii).

We can now easily bound $\Delta_{i,N}^{N,31}$.

Lemma 23. Assume $H(q)$ for some $q \geq 1$. Then a.s., on $\Omega_{1,N}$, for $t \geq 1$,
\[
\mathbb{E}_\theta[(\Delta_{i,N}^{N,31})^2] \leq Ct^{-1} \sum_{i=1}^N \left| \ell_N(i) - \bar{\ell}_N \right|^2.
\]

Proof. We first note that
\[
\Delta_{i,N}^{N,31} = 2\mu t^{-1} \left| \sum_{i=1}^N \left[U_{2t_i}^{i,N} - U_{t_i}^{i,N} \right] \left[\ell_N(i) - \bar{\ell}_N \right] \right|.
\]

Since $U_{2t_i}^{i,N} - U_{t_i}^{i,N}$ is centered (its conditional expectation \mathbb{E}_θ vanishes),
\[
\mathbb{E}_\theta[(\Delta_{i,N}^{N,31})^2] = 4\mu t^{-2} \sum_{i,j=1}^N \left[\ell_N(i) - \bar{\ell}_N \right] \left[\ell_N(j) - \bar{\ell}_N \right] \operatorname{Cov}_\theta(U_{2t_i}^{i,N} - U_{t_i}^{i,N}, U_{2t_j}^{j,N} - U_{t_j}^{j,N}).
\]

Using now Lemma 22-(i), we deduce that $|\operatorname{Cov}_\theta(U_{2t_i}^{i,N} - U_{t_i}^{i,N}, U_{2t_j}^{j,N} - U_{t_j}^{j,N})| \leq Ct(\mathbf{1}_{\{i=j\}} + N^{-1})$ on $\Omega_{1,N}$. Using furthermore that $|\ell_N(i) - \bar{\ell}_N| |\ell_N(j) - \bar{\ell}_N| \leq |\ell_N(i) - \bar{\ell}_N|^2 + |\ell_N(j) - \bar{\ell}_N|^2$ and a symmetry argument, we conclude that
\[
\mathbb{E}_\theta[(\Delta_{i,N}^{N,31})^2] \leq Ct^{-1} \sum_{i,j=1}^N \left| \ell_N(i) - \bar{\ell}_N \right| \mathbf{1}_{\{i=j\}} + N^{-1} = Ct^{-1} \sum_{i=1}^N \left| \ell_N(i) - \bar{\ell}_N \right|^2,
\]
which was our goal. \qed

We can finally estimate $\Delta_{i,N}^{N,211}$.

Lemma 24. Assume $H(q)$ for some $q \geq 1$. Then a.s., on $\Omega_{1,N}$, for $t \geq 1$, $\mathbb{E}_\theta[(\Delta_{i,N}^{N,211})^2] \leq CNt^{-2}$.

Proof. We as usual work on $\Omega_{1,N}$. We first note that $\mathbb{E}_\theta[(\Delta_{i,N}^{N,211})^2] = t^{-4} \sum_{i,j=1}^N a_{ij}$, where
\[
a_{ij} = \operatorname{Cov}_\theta((U_{2t_i}^{i,N} - U_{t_i}^{i,N})^2, (U_{2t_j}^{j,N} - U_{t_j}^{j,N})^2).
\]

But recalling (4) and setting $\alpha_N(s,t,i,k) = \sum_{n \geq 0} A_N^n(i,k) |\phi^n(2t-s) - \phi^n(t-s)|$ for all $0 \leq s \leq 2t$ and $i,k \in \{1,\ldots,N\}$,
\[
U_{2t_i}^{i,N} - U_{t_i}^{i,N} = \int_0^{2t} \sum_{k=1}^N \alpha_N(s,t,i,k) M_{s}^{k,N} ds.
\]

Concerning α_N, we will only use that, on $\Omega_{1,N}$,
\[
\int_0^{2t} |\alpha_N(s,t,i,k)| ds \leq 2 \sum_{n \geq 0} A_N^n \leq 2Q_N(i,k) \leq C(\mathbf{1}_{\{i=k\}} + N^{-1}),
\]
the last inequality coming from (8). A direct computation starting from (9) shows that
\[
a_{ij} = \sum_{k,l,a,b=1}^N \int_0^{2t} \int_0^{2t} \int_0^{2t} \int_0^{2t} \alpha_N(r,t,i,k) \alpha_N(s,t,l) \alpha_N(u,t,j,a) \alpha_N(v,t,j,b) \operatorname{Cov}_\theta(M_{r}^{k,N} M_{s}^{l,N}, M_{u}^{a,N} M_{v}^{b,N}) dvdu dsdr.
\]
Let us now denote by $\Gamma_{k,l,a,b}(t) = \sup_{r,s,u,v \in [0,2]} |\text{Cov}_0 (M_{r}^{k,N} M_{s}^{a,N}, M_{u}^{a,N} M_{v}^{b,N})|$. We can write, recalling (10),

$$
\sum_{i,j=1}^{N} a_{ij} \leq C \sum_{i,j,k,l,a,b=1}^{N} (1_{i=k} + N^{-1})(1_{i=l} + N^{-1})(1_{j=a} + N^{-1})(1_{j=b} + N^{-1}) \Gamma_{k,l,a,b}(t).
$$

Using some symmetry arguments, we find that $\sum_{i,j=1}^{N} a_{ij} \leq C[R_1 + \cdots + R_6]$, where

$$
R_1 = N^{-4} \sum_{i,j,k,l,a,b=1}^{N} \Gamma_{k,l,a,b}(t) = N^{-2} \sum_{k,l,a,b=1}^{N} \Gamma_{k,l,a,b}(t),
$$

$$
R_2 = N^{-3} \sum_{i,j,k,l,a,b=1}^{N} 1_{i=k} \Gamma_{k,l,a,b}(t) = N^{-2} \sum_{k,l,a,b=1}^{N} \Gamma_{k,l,a,b}(t),
$$

$$
R_3 = N^{-2} \sum_{i,j,k,l,a,b=1}^{N} 1_{i=k} 1_{j=a} \Gamma_{k,l,a,b}(t) = N^{-2} \sum_{k,l,a,b=1}^{N} \Gamma_{k,l,a,b}(t),
$$

$$
R_4 = N^{-2} \sum_{i,j,k,l,a,b=1}^{N} 1_{i=k} 1_{i=l} \Gamma_{k,l,a,b}(t) = N^{-1} \sum_{k,l,a,b=1}^{N} \Gamma_{k,k,a,b}(t),
$$

$$
R_5 = N^{-1} \sum_{i,j,k,l,a,b=1}^{N} 1_{i=k} 1_{i=l} 1_{j=a} \Gamma_{k,l,a,b}(t) = N^{-1} \sum_{k,l,a,b=1}^{N} \Gamma_{k,k,a,b}(t),
$$

$$
R_6 = \sum_{i,j,k,l,a,b=1}^{N} 1_{i=k} 1_{i=l} 1_{j=a} 1_{j=b} \Gamma_{k,l,a,b}(t) = \sum_{k,a=1}^{N} \Gamma_{k,k,a,a}(t).
$$

Using Lemma 22-(v)-(viii), from which $\Gamma_{k,l,a,b}(t) \leq C t^{2} \mathbf{1}_{\{k \neq l, a \neq b\} < 4}$, we deduce that $R_1 = R_2 = R_3 \leq C N t^2$. Next we use Lemma 22-(vi)-(viii), that is $\Gamma_{k,k,a,b}(t) \leq C \mathbf{1}_{\{k \neq a, a \neq b\}} N^{-2} t + \mathbf{1}_{\{k \neq a, a \neq b\}} N^{-2} t^2$, whence $R_4 = R_5 \leq C t + C N t^2 \leq C N t^2$. Finally, we use Lemma 22-(vii)-(viii), i.e. $\Gamma_{k,k,a,a}(t) \leq C \mathbf{1}_{\{k \neq a, a \neq b\}} N^{-1} t^{1/2} + \mathbf{1}_{\{k \neq a, a \neq b\}} t^{1/2}$ and find that $R_6 \leq C N^{1/2} t + C N t^2 \leq C N t^2$. All in all, we have proved that $\sum_{i,j=1}^{N} a_{ij} \leq C N t^2$, which completes the proof.

We can finally give the proof of Proposition 19. It suffices to recall that $|\mathcal{W}_t^N - \mathcal{W}_\infty^N| \leq \Delta_1^N + \Delta_2^{N,211} + \Delta_3^{N,212} + \Delta_4^{N,213} + \Delta_5^{N,22} + \Delta_6^{N,23} + \Delta_7^{N,31} + \Delta_8^{N,32}$ and to use Lemmas 20, 21, 23 and 24: this gives, on Ω_N^t,

$$
\mathbb{E}_t[|\mathcal{W}_t^N - \mathcal{W}_\infty^N|] \leq C \left(\frac{N}{t^{1/2}} \frac{1}{t} + \frac{N}{t^{1/2}} + \frac{N^{1/2}}{t^{1/2}} + \left(\sum_{i=1}^{N} [\ell_N(i) - \ell_N(t)]^2 \right)^{1/2} \frac{1}{t^{1/2}} + \frac{N^{1/2}}{t} \right).
$$

Recalling that $t \geq 1$, the conclusion immediately follows.

4.6. Third estimator. We recall that, for $\Delta > 0$ such that $t/(2\Delta)$ is an integer, we have set $\mathcal{E}_t^N = (\bar{Z}_{2t}^N - \bar{Z}_{t}^N)/t$, $Z_{2t}^N = (N/t) \sum_{i=t}^{2t} \left(\sum_{i=t}^{2t} |Z_i^N - \bar{Z}_{(i-1)t}^N| - \Delta \mathcal{E}_t^N \right)^2$ and $\mathcal{W}_t^N = 2Z_{2t}^N - Z_t^N$. The matrices A_N and Q_N and the event Ω_N^t were defined in Notation 12, as well as $\ell_N(i) = \sum_{j=1}^{N} Q_N(i,j)$ and $c_N(i) = \sum_{j=1}^{N} Q_N(j,i)$. We finally introduce $\mathcal{W}_\infty^N = \mu N^{-1} \sum_{i=1}^{N} \ell_N(i)(c_N(i))^2$. The aim of the subsection is to verify the following result.
Proposition 25. Assume \(H(q) \) for some \(q \geq 3 \). Then a.s., for \(t \geq 4 \) and \(\Delta \in [1, t/4] \) such that \(t/(2\Delta) \) is a positive integer,

\[
1_{\Omega_{N}^{1}}E_{\theta}\left[|W_{\Delta,t}^{N} - W_{\infty,\infty}^{N}|\right] \leq C\left(\frac{\Delta}{t} + \frac{N}{\Delta^{(q+1)/2}} + \frac{t}{\Delta^{q/2+1}}\right).
\]

Recall that we do not try to optimize the dependence in \(q \). We first write

\[
|W_{\Delta,t}^{N} - W_{\infty,\infty}^{N}| \leq D_{\Delta,t}^{N,1} + 2D_{\Delta,t}^{N,2} + D_{\Delta,t}^{N,3} + 2D_{\Delta,t}^{N,4} + 2D_{\Delta,t}^{N,5},
\]

where

\[
D_{\Delta,t}^{N,1} = \frac{N}{t} \sum_{a=t/\Delta+1}^{2t/\Delta} \left[\bar{Z}_{a\Delta}^{N} - \bar{Z}_{(a-1)\Delta}^{N} - \Delta \mu_{t} \bar{E}_{L}^{N}\right]^{2}, \quad D_{\Delta,t}^{N,2} = \frac{N}{t} \sum_{a=t/\Delta+1}^{2t/\Delta} \left[\bar{Z}_{a\Delta}^{N} - \bar{Z}_{(a-1)\Delta}^{N} - \Delta \mu_{t} \bar{E}_{L}^{N}\right]^{2},
\]

\[
D_{\Delta,t}^{N,3} = \frac{N}{t} \sum_{a=t/\Delta+1}^{2t/\Delta} \left[\bar{Z}_{a\Delta}^{N} - \bar{Z}_{(a-1)\Delta}^{N} - \Delta \mu_{t} \bar{E}_{L}^{N}\right]^{2} - E_{\theta}\left[\sum_{a=t/\Delta+1}^{2t/\Delta} \left[\bar{Z}_{a\Delta}^{N} - \bar{Z}_{(a-1)\Delta}^{N} - \Delta \mu_{t} \bar{E}_{L}^{N}\right]^{2}\right],
\]

\[
D_{\Delta,t}^{N,4} = \frac{2N}{t} E_{\theta}\left[\sum_{a=t/2\Delta+1}^{t/\Delta} \left[\bar{Z}_{2a\Delta}^{N} - \bar{Z}_{2(a-1)\Delta}^{N} - \Delta \mu_{t} \bar{E}_{L}^{N}\right]^{2}\right] - \frac{N}{t} E_{\theta}\left[\sum_{a=t/\Delta+1}^{2t/\Delta} \left[\bar{Z}_{a\Delta}^{N} - \bar{Z}_{(a-1)\Delta}^{N} - \Delta \mu_{t} \bar{E}_{L}^{N}\right]^{2}\right] - W_{\infty,\infty}^{N}.
\]

We treat these four terms one by one.

Lemma 26. Assume \(H(q) \) for some \(q \geq 1 \). Then a.s., on \(\Omega_{N}^{1} \), for \(1 \leq \Delta \leq t \),

\[
E_{\theta}[D_{\Delta,t}^{N,1}] \leq C \Delta [t^{-1} + Nt^{-2q}].
\]

Proof. Using that \((\Delta/t) \sum_{a=t/\Delta+1}^{2t/\Delta} (\bar{Z}_{a\Delta}^{N} - \bar{Z}_{(a-1)\Delta}^{N}) = \Delta \epsilon_{t}^{N} \), we find that

\[
D_{\Delta,t}^{N,1} = \frac{N}{t} \frac{1}{\Delta} (\Delta \mu_{t} \bar{E}_{L}^{N} - \Delta \epsilon_{t}^{N})^{2},
\]

which, on \(\Omega_{N}^{1} \), see Proposition 17, \(E_{\theta}[D_{\Delta,t}^{N,1}] \leq C N \Delta (t^{-2q} + (Nt)^{-1}) \leq C \Delta (Nt^{-2q} + t^{-1}). \quad \square \)

The second term is also easy.

Lemma 27. Assume \(H(q) \) for some \(q \geq 1 \). Then on \(\Omega_{N}^{1} \), for \(1 \leq \Delta \leq t \),

\[
E_{\theta}[D_{\Delta,t}^{N,2}] \leq C N t^{1-q}.
\]

Proof. Using that \(|(A - x)^2 - (A - y)^2| \leq |x - y|(|x| + |y| + 2|A|) \),

\[
D_{\Delta,t}^{N,2} \leq \frac{N}{t} \sum_{a=t/\Delta+1}^{2t/\Delta} \left[\Delta \mu_{t} \bar{E}_{L}^{N} - E_{\theta}[\bar{Z}_{a\Delta}^{N} - \bar{Z}_{(a-1)\Delta}^{N}]\left[\Delta \mu_{t} \bar{E}_{L}^{N} + E_{\theta}[\bar{Z}_{a\Delta}^{N} - \bar{Z}_{(a-1)\Delta}^{N}] + 2(\bar{Z}_{a\Delta}^{N} - \bar{Z}_{(a-1)\Delta}^{N})\right],
\]

\[
\leq \frac{N}{t} \sum_{a=t/\Delta+1}^{2t/\Delta} \left[\Delta \mu_{t} \bar{E}_{L}^{N} - E_{\theta}[\bar{Z}_{a\Delta}^{N} - \bar{Z}_{(a-1)\Delta}^{N}]\right]^{2}.
\]
whence
\[E_\theta[D_{N,t}^\Delta] \leq \frac{N}{t} \sum_{a=t/\Delta+1}^{2t/\Delta} \left| \Delta \mu_{\tilde{N}} - E_\theta[\tilde{Z}_{a\Delta}^N - \tilde{Z}_{(a-1)\Delta}^N] \right| \left| \Delta \mu_{\tilde{N}} + 3E_\theta[\tilde{Z}_{a\Delta}^N - \tilde{Z}_{(a-1)\Delta}^N] \right|. \]

But we deduce from Lemma 16-(ii) with \(r = 1 \) that, since \((a - 1)\Delta \geq t \),
\[\left| \Delta \mu_{\tilde{N}} - E_\theta[\tilde{Z}_{a\Delta}^N - \tilde{Z}_{(a-1)\Delta}^N] \right| \leq Ct^{1-q}, \]
whence also \(E_\theta[\tilde{Z}_{a\Delta}^N - \tilde{Z}_{(a-1)\Delta}^N] \leq \Delta \mu_{\tilde{N}} + Ct^{1-q} \leq \Delta \mu_{\tilde{N}} + C \). We conclude that
\[E_\theta[D_{N,t}^\Delta] \leq C \frac{N}{t} \sum_{a=t/\Delta+1}^{2t/\Delta} t^{1-q} \left[4\Delta \mu_{\tilde{N}} + C \right]. \]
Since \(\tilde{N} \) is bounded on \(\Omega_1^N \) and since \(\Delta \geq 1 \geq t^{1-q} \), we find \(E_\theta[D_{N,t}^\Delta] \leq C(N/t)(t/\Delta)t^{1-q}\Delta \leq CNt^{1-q} \).

To treat \(D_{N,t}^\Delta \), we need the following lemma.

Lemma 28. Assume \(H(q) \) for some \(q \geq 1 \). Almost surely on \(\Omega_1^N \), for all \(1 \leq \Delta \leq x/2 \),
\[\text{Var}_\theta \left(\tilde{U}_{x+\Delta}^{N} - \tilde{U}_{x}^{N} \right) = \frac{\Delta}{N} \mathcal{W}_{\infty,\infty} - \mathcal{X} + r_N(x, \Delta), \]
where \(\mathcal{X} \) is a \(\sigma((\theta_{ij}), i,j=1,\ldots,N) \)-measurable finite random variable and where \(r_N \) satisfies, for some deterministic constant \(C \), the inequality \(|r_N(x, \Delta)| \leq Cx\Delta^{-q}N^{-1} \).

Proof. We set \(V_{x,\Delta}^N = \text{Var}_\theta \left(\tilde{U}_{x+\Delta}^{N} - \tilde{U}_{x}^{N} \right) \).

Step 1. Recalling (4) and setting \(\beta_n(x, x+\Delta, s) = \varphi^n(x+\Delta-s) - \varphi^n(x-s) \) as in Lemma 15, we get
\[\tilde{U}_{x+\Delta}^{N} - \tilde{U}_{x}^{N} = \sum_{n \geq 0} \int_{0}^{x+\Delta} \beta_n(x, x+\Delta, s)N^{-1} \sum_{i,j=1}^{N} A_N^m(i,j)M_s^{j,N} \, ds. \]
Hence
\[V_{x,\Delta}^N = \sum_{m,n \geq 0} \int_{0}^{x+\Delta} \int_{0}^{x+\Delta} \beta_m(x, x+\Delta, r)\beta_n(x, x+\Delta, s)N^{-2} \sum_{i,j,k,l=1}^{N} A_N^m(i,j)A_N^n(k,l) \, Cov_\theta(M_r^{j,N}, M_i^{l,N}) \, drds. \]

Using Remark 10, we find
\[V_{x,\Delta}^N = \sum_{m,n \geq 0} \int_{0}^{x+\Delta} \int_{0}^{x+\Delta} \beta_m(x, x+\Delta, r)\beta_n(x, x+\Delta, s)N^{-2} \sum_{i,j,k,l=1}^{N} A_N^m(i,j)A_N^n(k,j)E_\theta[Z_{r(N)}^{j,N}] \, drds. \]

Step 2. Here we show that \(E_\theta[Z_{x}^{j,N}] = \mu \ell_N(j)s - X_j^{N} + R_j^{N}(s) \), with, for some constant \(C \), for all \(j = 1,\ldots,N \),
\[0 \leq X_j^{N} \leq C \quad \text{and} \quad |R_j^{N}(s)| \leq C(s^{1-q} \wedge 1). \]
By (3), we have \(E_\theta[Z_{x}^{j,N}] = \mu \sum_{n \geq 0} (\int_{0}^{s} r\varphi^n(s-r) \, dr) \sum_{l=1}^{N} A_N^m(j,l) \), whence by Lemma 15-(i),
\[E_\theta[Z_{x}^{j,N}] = \mu \sum_{n \geq 0} (\Lambda^n s - n\Lambda^n \kappa + \varepsilon_n(s)) \sum_{l=1}^{N} A_N^m(j,l) \leq \mu \ell_N(j)s - X_j^{N} + R_j^{N}(s). \]
We have used that $\sum_{n \geq 0} \Lambda^n \sum_{i=1}^N A_N^n(j,l) = \sum_{i=1}^N Q_N(j,l) = \ell_N(j)$ and we have set $X_j^N = \mu k \sum_{n \geq 0} n \Lambda^n \sum_{i=1}^N A_N^n(j,l)$ and $R_j^N(s) = \mu \sum_{n \geq 0} \varepsilon_n(s) \sum_{i=1}^N A_N^n(j,l)$. We obviously have $0 \leq X_j^N \leq \mu k \sum_{n \geq 0} n \Lambda^n ||A_N||_\infty^n \leq C$ on Ω^1_N and, since $\varepsilon_n(s) \leq C n^q \Lambda^n (s^{1-q} \wedge 1)$ by Lemma 15-(i), $|R_j^N(s)| \leq C(s^{1-q} \wedge 1) \sum_{n \geq 0} n^q \Lambda^n ||A_N||_\infty^n \leq C(s^{1-q} \wedge 1)$, still on Ω^1_N.

Step 3. Gathering Steps 1 and 2, we now write $V_{x,\Delta}^N = I - J + K$, where

$$I = \sum_{m,n \geq 0} \int_0^{x+\Delta} \int_0^{x+\Delta} \beta_m(x,x+\Delta,r)\beta_n(x,x+\Delta,s) N^{-2} \sum_{i,j,k=1}^N A_N^n(i,j) A_N^n(k,j) \mu \ell_N(j)(r \wedge s) dr ds,$$

$$J = \sum_{m,n \geq 0} \int_0^{x+\Delta} \int_0^{x+\Delta} \beta_m(x,x+\Delta,r)\beta_n(x,x+\Delta,s) N^{-2} \sum_{i,j,k=1}^N A_N^n(i,j) A_N^n(k,j) X_j^N dr ds,$$

$$K = \sum_{m,n \geq 0} \int_0^{x+\Delta} \int_0^{x+\Delta} \beta_m(x,x+\Delta,r)\beta_n(x,x+\Delta,s) N^{-2} \sum_{i,j,k=1}^N A_N^n(i,j) A_N^n(k,j) R_j^N(r \wedge s) dr ds.$$

Step 4. Here we verify that $|J| \leq Cx^{-2q} N^{-1}$ on Ω^1_N. Using that $|\int_0^{x+\Delta} \beta_m(x,x+\Delta,r) dr| \leq C n^q \Lambda^n x^{-q}$ by Lemma 15-(ii) and that X_j^N is bounded by Step 2 (and does not depend on time),

$$|J| \leq C \sum_{m,n \geq 0} m^q n^q \Lambda^{m+n} x^{-2q} N^{-2} \sum_{i,j,k=1}^N A_N^n(i,j) A_N^n(k,j)$$

$$\leq C x^{-2q} N^{-1} \sum_{m,n \geq 0} m^q n^q \Lambda^{m+n} ||A_N||_1^{m+n}.$$

The conclusion follows, since $\Lambda ||A_N||_1 \leq a < 1$ on Ω^1_N.

Step 5. We next check that $|K| \leq C x^{1-q} N^{-1}$ on Ω^1_N. Using the bound on R_j^N (see Step 2), we start from

$$|K| \leq C \sum_{m,n \geq 0} \int_0^{x+\Delta} \int_0^{x+\Delta} |\beta_m(x,x+\Delta,r)||\beta_n(x,x+\Delta,s)| N^{-1} ||A_N||_1^{m+n} (r \wedge s)^{1-q} \wedge 1) dr ds$$

$$\leq C(K_1 + K_2),$$

where, using that $x - \Delta \geq x/2$ (whence $(r \wedge s)^{1-q} \leq C x^{1-q}$ if $r \wedge s \geq x - \Delta$) and a symmetry argument,

$$K_1 = x^{1-q} \sum_{m,n \geq 0} \int_{x-\Delta}^{x+\Delta} \int_{x-\Delta}^{x+\Delta} |\beta_m(x,x+\Delta,r)||\beta_n(x,x+\Delta,s)| N^{-1} ||A_N||_1^{m+n} dr ds,$$

$$K_2 = \sum_{m,n \geq 0} \int_{x-\Delta}^{x+\Delta} \int_0^{x+\Delta} |\beta_m(x,x+\Delta,r)||\beta_n(x,x+\Delta,s)| N^{-1} ||A_N||_1^{m+n} dr ds.$$

First, on Ω^1_N,

$$K_1 \leq C x^{1-q} \sum_{m,n \geq 0} \Lambda^{m+n} N^{-1} ||A_N||_1^{m+n} \leq C N^{-1} x^{1-q} \leq C x^{1-q} N^{-1}$$
since \(x \geq \Delta \). Next, using that
\[\int_0^{x+\Delta} |\beta_m(x, x + \Delta, r)| \, dr \leq C m \Lambda^m \Delta^{-q} \]
by Lemma 15-(ii) and that
\[\int_0^{x+\Delta} |\beta_n(x, x + \Delta, s)| \, ds \leq 2 \Lambda^n, \]
still on \(\Omega_N^1 \),

\[
K_2 \leq C \Delta^{-q} \sum_{m,n \geq 0} m^n \Lambda^{m+n} N^{-1} ||A_N||_{1}^{m+n} \leq C \Delta^{-q} N^{-1} \leq C x \Delta^{-q} N^{-1},
\]
since \(x \geq 1 \) by assumption.

Step 6. Finally recall that
\[\gamma_{m,n}(x, x + \Delta) = \int_0^{x+\Delta} \int_0^{x+\Delta} (s \wedge u) \beta_m(x, x + \Delta, s) \beta_n(x, x + \Delta, u) \, du \, ds = \Delta \Lambda^{m+n} - \kappa_{m,n} \Lambda^{m+n} + \varepsilon_{m,n}(x, x + \Delta) \]
with the notation of Lemma 15-(iii). We thus may write

\[
I = \mu \sum_{m,n \geq 0} \gamma_{m,n}(x, x + \Delta) N^{-2} \sum_{i,j,k=1}^N A_N^m(i,j) A_N^n(k,j) \ell_N(j) = I_1 - I_2 + I_3,
\]

where

\[
I_1 = \mu \Delta \sum_{m,n \geq 0} A_N^{m+n} N^{-2} \sum_{i,j,k=1}^N A_N^m(i,j) A_N^n(k,j) \ell_N(j),
\]

\[
I_2 = \mu \sum_{m,n \geq 0} \kappa_{m,n} \Lambda^{m+n} N^{-2} \sum_{i,j,k=1}^N A_N^m(i,j) A_N^n(k,j) \ell_N(j),
\]

\[
I_3 = \mu \sum_{m,n \geq 0} \varepsilon_{m,n}(x, x + \Delta) N^{-2} \sum_{i,j,k=1}^N A_N^m(i,j) A_N^n(k,j) \ell_N(j).
\]

First, we clearly have

\[
I_1 = \mu \Delta N^{-2} \sum_{i,j,k=1}^N Q_N(i,j) Q_N(k,j) \ell_N(j) = \mu \Delta N^{-2} \sum_{j=1}^N (c_N(j))^2 \ell_N(j) = \Delta N^{-1} W_{\infty, \infty}^N.
\]

We next simply set \(\mathcal{X}^N = I_2 \), which is clearly \(\sigma((\theta_{i,j})_{i,j=1,\ldots,N}) \)-measurable and well-defined on \(\Omega_N^1 \). Finally, since \(\varepsilon_{m,n}(x, x + \Delta) \leq C(m+n)^2 \Lambda^{m+n} \Delta^{-q} \)
by Lemma 15-(iii), since \(\ell_N \) is bounded on \(\Omega_N^1 \) and since, as already seen, \(\sum_{i,j,k=1}^N A_N^m(i,j) A_N^n(k,j) \leq N ||A_N||_{1}^{m+n} \),

\[
|I_3| \leq C x \Delta^{-q} N^{-1} \sum_{m,n \geq 0} (n+m)^2 \Lambda^{m+n} ||A_N||_{1}^{m+n} \leq C x \Delta^{-q} N^{-1}.
\]

All this implies that \(|I - \Delta N^{-1} W_{\infty, \infty}^N + \mathcal{X}^N| \leq C x \Delta^{-q} N^{-1} \). Since \(V_{t, \Delta} = I - J + K \) by Step 3 and since we have seen in Steps 4 and 5 that \(|J| \leq C x^{-2q} N^{-1} \leq C x \Delta^{-q} N^{-1} \) and \(|K| \leq C x \Delta^{-q} N^{-1} \),
we conclude that, on \(\Omega_N^1 \), \(|V_{t, \Delta} - \Delta N^{-1} W_{\infty, \infty}^N + \mathcal{X}^N| \leq C x \Delta^{-q} N^{-1} \) as desired. \(\square \)

We can now study the term \(D_{\Delta,t}^{N,4} \).

Lemma 29. Assume \(H(q) \) for some \(q \geq 1 \). Then a.s. on \(\Omega_N^1 \), for \(1 \leq \Delta \leq t/4 \), \(D_{\Delta,t}^{N,4} \leq C t \Delta^{-1-q} \).

Proof. We clearly have

\[
D_{\Delta,t}^{N,4} = \left| \frac{2N}{t} \sum_{a=t/(2\Delta)+1}^{t/\Delta} \vartheta_{a} \left(\bar{U}_{2a}^N - \bar{U}_{2(a-1)}^N \right) - \frac{N}{t} \sum_{a=t/\Delta+1}^{2t/\Delta} \vartheta_{a} \left(\bar{U}_{a}^N - \bar{U}_{(a-1)}^N \right) - W_{\infty, \infty}^N \right|.
\]
Lemma 30. and we set as usual $\bar{\Gamma}$

The following tedious lemma will allow us to treat the last term $D_{\Delta,t}^{N,3}$.

Lemma 30. Assume $H(q)$ for some $q \geq 1$. On Ω_N, for all $t, x, \Delta \geq 1$ with $t/2 \leq x - \Delta \leq x + \Delta \leq 2t$,

$$
\var\theta((\bar{U}_x^N - \bar{U}_x^N)^2) \leq C \left(\frac{\Delta^2}{N^2} + \frac{t^2}{N^2 \Delta^4q} \right)
$$

and, if $t/2 \leq y - \Delta \leq y + \Delta \leq x - 2\Delta \leq x + \Delta \leq 2t$,

$$
\text{Cov}_\theta((\bar{U}_{x+\Delta}^N - \bar{U}_{x+\Delta}^N), (\bar{U}_{y-\Delta}^N - \bar{U}_{y-\Delta}^N)^2) \leq C \left(\frac{t^{1/2}}{N^{\Delta q-1}} + \frac{t^2}{N^2 \Delta^4q} + \frac{t^{1/2}}{N^2 \Delta^{q-3/2}} \right).
$$

Proof. We divide the proof in several steps. We work on Ω_N^1.

Step 1. For $i = 1, \ldots, N$ and $z \in [x, x + \Delta]$, we can write, recalling (4) and that $\beta_n(x, z, r) = \varphi^{*n}(z - r) - \varphi^{*n}(x - r)$,

$$
U_{x,z}^{i,N} - U_{x,z}^{i,N} = \sum_{n=0}^{N} \int_0^z \beta_n(x, z, r) \sum_{j=1}^N A_n^i(i,j)M_{x,z}^{j,N}dr = \Gamma_{x,z}^{i,N} + X_{x,z}^{i,N},
$$

where

$$
\Gamma_{x,z}^{i,N} = \sum_{n=0}^N \int_{x-\Delta}^z \beta_n(x, z, r) \sum_{j=1}^N A_n^i(i,j)(M_{x,z}^{j,N} - M_{x,z}^{j,N})dr,
$$

$$
X_{x,z}^{i,N} = \sum_{n=0}^N \left(\int_{x-\Delta}^z \beta_n(x, z, r)dr \right) \sum_{j=1}^N A_n^i(i,j)M_{x,z}^{j,N} + \sum_{n=0}^N \int_0^z \beta_n(x, z, r) \sum_{j=1}^N A_n^i(i,j)M_{x,z}^{j,N}dr,
$$

and we set as usual $\bar{\Gamma}_{x,z}^N = N^{-1} \sum_{i=1}^N \Gamma_{x,z}^{i,N}$ and $\bar{X}_{x,z}^N = N^{-1} \sum_{i=1}^N X_{x,z}^{i,N}$.

Step 2. We now show that, on Ω_N^1, for $z \in [x, x + \Delta]$,

$$
\sup_{i=1,\ldots,N} \text{E}_\theta[(X_{x,z}^{i,N})^4] \leq Ct^2 \Delta^{-4q} \quad \text{and} \quad \text{E}_\theta[(\bar{X}_{x,z}^N)^4] \leq Ct^2N^2 \Delta^{-4q}.
$$

Using Lemma 28, (observe that for $a \in \{t/(2\Delta) + 1, \ldots, t/\Delta\}$, $x = 2(a-1)\Delta \geq t$ satisfies $2\Delta \leq x/2$ and, for $a \in \{t/\Delta + 1, \ldots, 2t/\Delta\}$, $x = (a-1)\Delta \geq t$ satisfies $\Delta \leq x/2$), we get

$$
D_{\Delta,t}^{N,4} = \left| \frac{2N}{t} \sum_{a=t/(2\Delta)+1}^{t/\Delta} \left[\frac{2\Delta}{N} W_{x,\infty}^{N,\infty} - X_N^{a-1}(2(a-1)\Delta, 2\Delta) \right] - \frac{N}{t} \sum_{a=t/\Delta+1}^{2t/\Delta} r_N((a-1)\Delta, \Delta) \right|.
$$

This rewrites

$$
D_{\Delta,t}^{N,4} = \left| \frac{2N}{t} \sum_{a=t/(2\Delta)+1}^{t/\Delta} \left[\frac{2\Delta}{N} W_{x,\infty}^{N,\infty} - X_N^{2(a-1)\Delta} - 2\Delta - X_N^{a-1}(2(a-1)\Delta, 2\Delta) \right] - \frac{N}{t} \sum_{a=t/\Delta+1}^{2t/\Delta} r_N((a-1)\Delta, \Delta) \right|.
$$

Since $r_N((a, \Delta)) \leq C_t \Delta^{-q} N^{-1}$, we find that $D_{\Delta,t}^{N,4} \leq C(N/t)(t/\Delta)(t/\Delta^{-q} N^{-1}) = C t^{-1-q}$. □
Using that \(|f^z_{x-\Delta} \beta_n(x, z, r)dr| + \int_0^{x-\Delta} |\beta_n(x, z, r)|dr \leq Cn^q \Lambda^{n} \Delta^{-q}\) by Lemma 15-(ii)

\[|X_{x, z}^{i,N}| \leq C \sum_{n \geq 0} n^q \Lambda^{n} \Delta^{-q} \sum_{j=1}^{N} A_{N}^{n}(i, j) \sup_{[0,2t]} |M_{r}^{j,N}|.\]

But we now from Lemma 16-(iii) that \(\sup_{j=1,\ldots,N} \mathbb{E}_{\theta}[\sup_{[0,2t]} |M_{r}^{j,N}|] \leq C t^2\). We thus deduce from the Minkowski inequality that, still on \(\Omega_{1}^{N}\),

\[\mathbb{E}_{\theta}[(X_{x, z}^{i,N})^4]^{1/4} \leq C t^{1/2} \Delta^{-q} \sum_{n \geq 0} n^q \Lambda^{n} \sum_{j=1}^{N} A_{N}^{n}(i, j) \leq C t^{1/2} \Delta^{-q} \sum_{n \geq 0} n^q \Lambda^{n} ||A_N||_{\infty}^n \leq C t^{1/2} \Delta^{-q}.\]

We next observe that

\[\bar{X}_{x, z}^{N} = \sum_{n \geq 0} \left(\int_{x-\Delta}^{z} \beta_n(x, z, r)dr \right) O_{x-\Delta}^{N,n} + \sum_{n \geq 0} \int_{0}^{x-\Delta} \beta_n(x, z, r)O_{r}^{N,n} dr,\]

where the martingale

\[O_{r}^{N,n} = N^{-1} \sum_{i,j=1}^{N} A_{N}^{n}(i, j)M_{r}^{j,N}\]

has for quadratic variation \([O^{N,n}, O^{N,n}]_{r} = N^{-2} \sum_{j=1}^{N} (\sum_{i=1}^{N} A_{N}^{n}(i, j))^2 Z_{r}^{j,N} \leq N^{-1} ||A_N||_{1}^n \bar{Z}_{r}^{N}\) by Remark 10. By Lemma 16-(iii), we conclude that, on \(\Omega_{1}^{N}\),

\[\mathbb{E}_{\theta}\left[\sup_{[0,2t]} (O_{r}^{N,n})^4 \right] \leq C N^{-2}||A_N||_{1}^n \mathbb{E}_{\theta}(\bar{Z}_{2t}^{N})^2 \leq C N^{-2}||A_N||_{1}^n t^2.\]

Using again that \(|\int_{x-\Delta}^{z} \beta_n(x, z, r)dr| + \int_{0}^{x-\Delta} |\beta_n(x, z, r)|dr \leq Cn^q \Lambda^{n} \Delta^{-q}\) by Lemma 15-(ii),

\[|\bar{X}_{x, z}^{N}| \leq C \sum_{n \geq 0} n^q \Lambda^{n} \Delta^{-q} \sup_{[0,2t]} |O_{r}^{N,n}|.\]

Thus, we infer from the Minkowski inequality that, still on \(\Omega_{1}^{N}\),

\[\mathbb{E}_{\theta}[(\bar{X}_{x, z}^{N})^4]^{1/4} \leq C \sum_{n \geq 0} n^q \Lambda^{n} \Delta^{-q} N^{-1/2} ||A_N||_{1}^{n} t^{1/2} \leq C \Delta^{-q} N^{-1/2} t^{1/2}.\]

Step 3. We next check that \(\mathbb{E}_{\theta}[(\bar{X}_{x, z}^{N})^4] \leq C \Delta^2 N^{-2}\) for any \(z \in [x, x + \Delta]\), on \(\Omega_{1}^{N}\). Using the same martingale \(O^{N,n}\) as in Step 2,

\[\bar{X}_{x, z}^{N} = \sum_{n \geq 0} \int_{x-\Delta}^{z} \beta_n(x, z, r)[O_{r}^{N,n} - O_{x-\Delta}^{N,n}] dr.\]

Recalling that \([O^{N,n}, O^{N,n}]_{r} = N^{-2} \sum_{j=1}^{N} (\sum_{i=1}^{N} A_{N}^{n}(i, j))^2 Z_{r}^{j,N} + \sum_{i=1}^{N} A_{N}^{n}(i, j) \leq ||A_N||_{1}^n\),

\[\mathbb{E}_{\theta}\left[\sup_{[x-\Delta,z]} (O_{r}^{N,n} - O_{x-\Delta}^{N,n})^4 \right] \leq C N^{-4} ||A_N||_{1}^n \mathbb{E}_{\theta}\left(\left(\sum_{j=1}^{N} (Z_{r}^{j,N} - Z_{x-\Delta}^{j,N}) \right)^2 \right) \]

\[= C N^{-4} ||A_N||_{1}^n \mathbb{E}_{\theta}\left(\left(\bar{Z}_{z}^{N} - \bar{Z}_{x-\Delta}^{N} \right)^2 \right).\]

We conclude from Lemma 16-(iii) that (recall that \(z \in [x, x + \Delta]\))

\[\mathbb{E}_{\theta}\left[\sup_{[x-\Delta,z]} (O_{r}^{N,n} - O_{x-\Delta}^{N,n})^4 \right] \leq C \Delta^2 N^{-2} ||A_N||_{1}^n.\]
Using that $\int_{x-\Delta}^{x} |\beta_n(x, z, r)| dr \leq 2\Lambda^n$ and the Minkowski inequality,
$$\mathbb{E}[(\Gamma_{x,z}^N)^4]^{1/4} \leq C \sum_{n \geq 0} \Lambda^n \Delta^{1/2} N^{-1/2} ||A_N||_1^n \leq C \Delta^{1/2} N^{-1/2}.$$

Step 4. Recalling Step 1, $(\tilde{U}_{x+\Delta}^N - \tilde{U}_x^N)^4 = (\tilde{X}_{x+\Delta}^N + \tilde{X}_{x+\Delta}^N)^4 \leq 8(\tilde{X}_{x+\Delta}^N)^4 + 8(\tilde{X}_{x+\Delta}^N)^4$.
We deduce from Steps 2 and 3 that $\text{Var}_\theta((\tilde{U}_{x+\Delta}^N - \tilde{U}_x^N)^2) \leq C(\Delta^2 N^{-2} + t^2 N^{-2} \Delta^{-4})$.

Step 5. Here we show that
$$\left| \text{Cov}_\theta ((\tilde{U}_{x+\Delta}^N - \tilde{U}_x^N)^2, (\tilde{U}_{y+\Delta}^N - \tilde{U}_y^N)^2) \right| \leq \left| \text{Cov}_\theta ((\tilde{X}_{x+\Delta}^N)^2, (\tilde{X}_{y+\Delta}^N)^2) \right| + \frac{C}{N^2} \left(\Delta^2 + \frac{t^{1/2}}{\Delta^{3/2}} \right).$$
It suffices to write that $(\tilde{U}_{x+\Delta}^N - \tilde{U}_x^N)^2 = (\tilde{X}_{x+\Delta}^N + \tilde{X}_{x+\Delta}^N)^2 + 2\tilde{X}_{x+\Delta}^N \tilde{X}_{x+\Delta}^N$, the same formula with y instead of x, and to use the bilinearity of the covariance: we have the term $\text{Cov}_\theta ((\tilde{X}_{x+\Delta}^N)^2, (\tilde{X}_{y+\Delta}^N)^2)$, and the other ones are bounded by
$$\mathbb{E}_\theta \left[(\tilde{X}_{x+\Delta}^N)^2 (\tilde{X}_{y+\Delta}^N)^2 + 2(\tilde{X}_{x+\Delta}^N)^2 |\tilde{X}_{y+\Delta}^N + \tilde{X}_{x+\Delta}^N| + (\tilde{X}_{x+\Delta}^N)^2 (\tilde{X}_{y+\Delta}^N)^2 + 2(\tilde{X}_{x+\Delta}^N)^2 |\tilde{X}_{y+\Delta}^N + \tilde{X}_{x+\Delta}^N| + 2(\tilde{X}_{x+\Delta}^N)^2 |\tilde{X}_{y+\Delta}^N + \tilde{X}_{x+\Delta}^N| (\tilde{X}_{y+\Delta}^N)^2 + 2(\tilde{X}_{x+\Delta}^N)^2 |\tilde{X}_{y+\Delta}^N + \tilde{X}_{x+\Delta}^N| (\tilde{X}_{y+\Delta}^N)^2 + 4(\tilde{X}_{x+\Delta}^N)^2 |\tilde{X}_{y+\Delta}^N + \tilde{X}_{x+\Delta}^N| (\tilde{X}_{y+\Delta}^N)^2 + 4(\tilde{X}_{x+\Delta}^N)^2 |\tilde{X}_{y+\Delta}^N + \tilde{X}_{x+\Delta}^N| (\tilde{X}_{y+\Delta}^N)^2 \right].$$

We bound all these terms, using only the Hölder inequality and recalling that $\mathbb{E}[(\tilde{X}_{x+\Delta}^N)^4] \leq C \Delta^2 N^{-2}$ and $\mathbb{E}[(\tilde{X}_{x+\Delta}^N)^4] \leq C t^2 N^{-2} \Delta^{-4}$ and that the same bounds hold with y instead of x.

We finally remove a few terms using the inequality $a + b/4 + c/4 + d/4 < 4(a + b/4 + c/4 + d/4)$ with $a = t^2 N^{-2} \Delta^{-4}$ and $b = \Delta^2 N^{-2}$.

Step 6. Recall that $y + \Delta \leq x - 2 \Delta$. We check here that for any $r, s \in [x - \Delta, x + \Delta]$, any $u, v \in [y - \Delta, y + \Delta]$, any $i, j, k, l \in \{1, \ldots, N\}$,
$$\left| \text{Cov}_\theta \left((M^i_r - M^i_{r-\Delta})(M^j_r - M^j_{r-\Delta}), (M^k_r - M^k_{r-\Delta})(M^l_r - M^l_{r-\Delta}) \right) \right| \leq C 1_{i=j} t^{1/2} \Delta^{-1}. $$
First, $i \neq j$ implies that the covariance vanishes, since $\mathbb{E}_\theta[(M^i_r - M^i_{r-\Delta})(M^j_r - M^j_{r-\Delta})|\mathcal{F}_{x-\Delta}] = 0$ and since $u, v \leq y + \Delta \leq x - \Delta$. We next assume that $i = j$ and w.l.o.g. that $r \leq s$. Conditioning with respect to \mathcal{F}_r, we easily find, since $u, v \leq x - \Delta \leq r$,
$$K := \text{Cov}_\theta \left((M^i_r - M^i_{r-\Delta})(M^i_s - M^i_{s-\Delta}), (M^k_r - M^k_{r-\Delta})(M^l_r - M^l_{r-\Delta}) \right) = \text{Cov}_\theta \left((M^i_r - M^i_{r-\Delta})^2, (M^k_r - M^k_{r-\Delta})(M^l_r - M^l_{r-\Delta}) \right).$$
We write as usual $(M^i_r - M^i_{r-\Delta})^2 = 2 \int_{x-\Delta}^{x} M^i_r^2 dM^i_r + Z^i_{x-\Delta} - Z^i_{x-\Delta}$, because $[M^i_r, M^i_s]_r = Z^i_{s-\Delta}$ by Remark 10. Since $\mathbb{E}[(\tilde{X}_{x-\Delta}^{i,N})_r dM^i_r|\mathcal{F}_{x-\Delta}] = 0$ and since $u, v \leq x - \Delta$, we find that
$$K = \text{Cov}_\theta \left(Z^i_{x-\Delta} - Z^i_{x-\Delta}, (M^k_r - M^k_{r-\Delta})(M^l_r - M^l_{r-\Delta}) \right) = \text{Cov}_\theta \left(U^i_{x-\Delta} - U^i_{x-\Delta}, (M^k_r - M^k_{r-\Delta})(M^l_r - M^l_{r-\Delta}) \right) = \text{Cov}_\theta \left(\Gamma^i_{x-\Delta, r} + X^i_{x-\Delta, r}, (M^k_r - M^k_{r-\Delta})(M^l_r - M^l_{r-\Delta}) \right)$$
with the notation of Step 1. But $\Gamma^i_{x-\Delta, r}$ involves only increments of martingales of the form $M^i_r - M^i_{r-2\Delta}$, of which the conditional expectation knowing $\mathcal{F}_{x-2\Delta}$ vanishes. Since now $u, v \leq x - 2 \Delta$, we conclude that
$$K = \text{Cov}_\theta \left(Z^i_{x-\Delta} - Z^i_{x-\Delta}, (M^k_r - M^k_{r-\Delta})(M^l_r - M^l_{r-\Delta}) \right) = \text{Cov}_\theta \left(U^i_{x-\Delta} - U^i_{x-\Delta}, (M^k_r - M^k_{r-\Delta})(M^l_r - M^l_{r-\Delta}) \right) = \text{Cov}_\theta \left(\Gamma^i_{x-\Delta, r} + X^i_{x-\Delta, r}, (M^k_r - M^k_{r-\Delta})(M^l_r - M^l_{r-\Delta}) \right).$$
Lemma 31. Assume $H(q)$ for some $q \geq 1$. On Ω_1^N, for all $1 \leq \Delta \leq t/2$,

$$
\mathbb{E}_\theta(D^{N,3,\Delta,t}_t)^2 \leq C \left(\frac{\Delta}{t} + \frac{t}{\Delta^{q+1}} + \frac{N t^{1/2}}{\Delta^{q+1/2}} + \frac{t^{1/2}}{\Delta^{q+1/2}} \right).
$$

Proof. First note that by definition of $D^{N,3,\Delta,t}_t$ and since $\bar{U}^N_t = \bar{Z}^N_t - \mathbb{E}_\theta[\bar{Z}^N_t]$,

$$
\mathbb{E}_\theta(D^{N,3,\Delta,t}_t)^2 = \frac{N^2}{t^2} \mathbb{V}a r(\sum_{a=t/\Delta+1}^{2t/\Delta} (\bar{U}_a^N - \bar{U}_{(a-1)\Delta})^2) = \frac{N^2}{t^2} \sum_{a,b=t/\Delta+1}^{2t/\Delta} K_{a,b}.
$$
where $K_{a,b} = \text{Cov}_\theta \left((\bar{U}_{a\Delta}^N - \bar{U}_a^N)^2, (\bar{U}_{b\Delta}^N - \bar{U}_{(b-1)\Delta}^N)^2 \right)$. If $|a-b| \leq 2$, we only use that

$$|K_{a,b}| \leq \left(\text{Var}_\theta \left((\bar{U}_{a\Delta}^N - \bar{U}_{(a-1)\Delta}^N)^2 \right) \right)^{1/2} \leq C \left(\frac{\Delta^2}{N^2} + \frac{t^2}{N^2 \Delta q} \right).$$

We finally used the first estimate of Lemma 30, which is valid since $x = (a-1)\Delta$ satisfies $x \geq t$ and thus $t/2 \leq x - \Delta \leq x + \Delta \leq 2t$ and $x = (b-1)\Delta$ satisfies the same conditions. If now $|a-b| \geq 3$ and w.l.o.g. $a > b$, we use the second estimate of Lemma 30, which is valid since $x = (a-1)\Delta$ and $y = (b-1)\Delta$ satisfy the required conditions (in particular, $y + \Delta \leq x - 2\Delta$). This gives

$$|K_{a,b}| \leq C \left(\frac{t^{1/2}}{N^2 \Delta \gamma - 1} + \frac{t^2}{N^2 \Delta q} + \frac{t^{1/2}}{N^2 \Delta \gamma - 3/2} \right).$$

We end with

$$\mathbb{E}_\theta \left[(D_{\Delta, t}^{N,3})^2 \right] \leq C \frac{N^2 \Delta}{t^2} \left(\frac{\Delta^2}{N^2} + \frac{t^2}{N^2 \Delta q} \right) + C \frac{N^2 \Delta^2}{t^2} \left(\frac{t^{1/2}}{N\Delta \gamma - 1} + \frac{t^2}{N^2 \Delta q} + \frac{t^{1/2}}{N^2 \Delta \gamma - 3/2} \right).$$

The conclusion follows.

To prove Proposition 25. Gathering Lemmas 26, 27, 29 and 31, we see that, on Ω_N^1, if $1 \leq \Delta \leq t/4$,

$$\mathbb{E}_\theta \left[(W_{\Delta,t}^N - W_{\infty}\infty^N) \right] \leq \mathbb{E}_\theta \left[(D_{\Delta, t}^{N,1} + 2D_{\Delta, t}^{N,2} + 2D_{\Delta, t}^{N,3} + 2D_{\Delta, t}^{N,4}) \right] \leq C \left(\frac{\Delta}{t} + \frac{N \Delta}{t^2 q} + \frac{N}{t \Delta q} + \frac{t}{\Delta q + 1} + \frac{\sqrt{\Delta}}{t} + \frac{t}{\Delta q + 1} + \frac{N t^{1/2}}{\Delta q + 1} + \frac{t^2}{\Delta q + 1} + \frac{t^{1/2}}{\Delta q + 1} \right).$$

Using that $q \geq 3$ (whence in particular $2q - 1 \geq q - 1 \geq (q+1)/2$) and that $1 \leq \Delta \leq t$, we easily deduce that $t \Delta / \Delta q \leq (\Delta t)^{1/2}$, that $N t^{2q+1} \leq N \Delta^2 \leq N \Delta (q+1)/2$, that $N t^{1-q} \leq N (\Delta^2 - \Delta(q+1)/2)$, that $t \Delta q^{-2} \leq t \Delta q^{-2} - 1$, that $t^{1/2} \Delta^{2q-1} \leq t \Delta^{2q-1} \leq t \Delta^{q-1} \leq t \Delta q^{-2} - 1$, that $N^{1/2} \Delta^{q-1} \Delta^{-q+1} \leq N \Delta^{q-1} + t^{1/2} \Delta^{q+1} - 1$, that $t \Delta^{q-2} \leq t \Delta^{q-2} - 1$, that $t^{1/2} \Delta^{2q-1} \leq t \Delta^{2q-1} - 1$, that $t \Delta^{q-2} \leq t \Delta^{q-2} - 1$ and that $t^{1/4} \Delta^{q-2} \leq t^{1/4} \Delta^{q-2} - 1$. This gives, still on Ω_N^1,

$$\mathbb{E}_\theta \left[(W_{\Delta,t}^N - W_{\infty}\infty^N) \right] \leq C \left(\frac{\Delta}{t} + \frac{N \Delta}{t^2 q} + \frac{t}{\Delta q + 1} \right),$$

as desired.

4.7. Conclusion. We now have all the weapons to check our main result.

Proof of Theorem 3. Recall that we assume $H(q)$ for some $q > 3$ and that $\Delta_t = t/(2[1/(t^{1-4}/(q+1))]) \sim t^{4/(q+1)}/2$ (for t large). We can of course assume that $t \geq 4$ is large enough so that $\Delta \in [1, t/4]$, because else the inequalities of the statement are trivial. Using Propositions 14 and 17, we find

$$\mathbb{E} \left[1_{\Omega_N^1} | E_{t}^N - \mu_{1 - Ap} \right] \leq \mathbb{E} \left[1_{\Omega_N^1} | E_{t}^N - \mu_{Nt} - \frac{1}{1 - Ap} \right] \leq C \left(\frac{1}{N} + \frac{1}{\sqrt{Nt}} + \frac{1}{t^q} \right).$$

Since now $\text{Pr}(\{(\Omega_N^1)^c\}) \leq C e^{-cN}$ by Lemma 13, we conclude that for any $\varepsilon \in (0, 1)$,

$$\text{Pr} \left(| E_{t}^N - \mu_{1 - Ap} | \geq \varepsilon \right) \leq C e^{-cN} + C \left(\frac{1}{N} + \frac{1}{\sqrt{Nt}} + \frac{1}{t^q} \right) \leq C \left(\frac{1}{N} + \frac{1}{\sqrt{Nt}} + \frac{1}{t^q} \right).$$
Similarly, Propositions 14 and 19 imply, since $V_N = \varepsilon^2 \sum_{i=1}^N |\ell_N(i) - \tilde{\ell}_N|^2$,

$$
\mathbb{E} \left[\mathbb{I}_{\Omega_N} \left| V_t^N - \frac{\mu^2 A^2 p(1-p)}{(1 - \Lambda p)^2} \right| \right] \leq C \mathbb{E} \left[\mathbb{I}_{\Omega_N} |V_t^N - V_N| \right] + \mu^2 \mathbb{E} \left[\mathbb{I}_{\Omega_N} \left| \sum_{i=1}^N |\ell_N(i) - \tilde{\ell}_N|^2 - \frac{\Lambda^2 p(1-p)}{(1 - \Lambda p)^2} \right| \right] \leq C \left(\frac{1}{\sqrt{N}} + \frac{N}{t^q} + \frac{\sqrt{N}}{t} + \frac{1}{\sqrt{t}} \right).
$$

The last inequality uses a second time Proposition 14. We conclude, using Lemma 13 as previously, that for any $\varepsilon \in (0, 1)$,

$$
\mathbb{P} \left(\left| V_t^N - \frac{\mu^2 A^2 p(1-p)}{(1 - \Lambda p)^2} \right| \geq \varepsilon \right) \leq C e^{-cN} + C \frac{1}{\varepsilon} \left(\frac{1}{\sqrt{N}} + \frac{N}{t^q} + \frac{\sqrt{N}}{t} + \frac{1}{\sqrt{t}} \right) \leq C \frac{1}{\varepsilon} \left(\frac{1}{\sqrt{N}} + \frac{N}{t^q} + \frac{\sqrt{N}}{t} \right).
$$

because $t^{-1/2} = (N^{1/4} t^{-1/2})^N \leq N^{1/2} t^{-1} + N^{-1/2}$. This implies that

$$
\mathbb{P} \left(\left| V_t^N - \frac{\mu^2 A^2 p(1-p)}{(1 - \Lambda p)^2} \right| \geq \varepsilon \right) \leq C \frac{1}{\varepsilon} \left(\frac{1}{\sqrt{N}} + \frac{\sqrt{N}}{t} \right).
$$

Indeed, either $\sqrt{N} > t$ and the inequality is trivial or $\sqrt{N} \leq t$ and then $N t^{-q} \leq N^{1/2} t^{-1} \leq N^{1/2} t^{-1}$.

Finally, we infer from Propositions 14 and 25, since $W_{\infty, \infty} = \mu N^{-1} \sum_{i=1}^N \ell_N(i) c_N(i)^2$, that

$$
\mathbb{E} \left[\mathbb{I}_{\Omega_N} |W_{\Delta_t} N - \frac{\mu}{(1 - \Lambda p)^3} \right] \leq \mathbb{E} \left[\mathbb{I}_{\Omega_N} |W_{\Delta_t,t} - W_{\infty, \infty} \right] + \mu \mathbb{E} \left[\mathbb{I}_{\Omega_N} \left| N^{-1} \sum_{i=1}^N \ell_N(i) c_N(i)^2 - \frac{1}{(1 - \Lambda p)^3} \right| \right] \leq C \left(\frac{1}{\sqrt{N}} + \sqrt{\frac{\Delta_t}{t}} + \frac{N}{\Delta_t (q+1)/2} + \frac{t}{\Delta_t^{q/2+1}} \right),
$$

whence as usual by Lemma 13, for $\varepsilon \in (0, 1)$,

$$
\mathbb{P} \left(\left| W_{\Delta_t,t} - \frac{\mu}{(1 - \Lambda p)^3} \right| \geq \varepsilon \right) \leq C e^{-cN} + C \frac{1}{\varepsilon} \left(\frac{1}{\sqrt{N}} + \sqrt{\frac{\Delta_t}{t}} + \frac{N}{\Delta_t (q+1)/2} + \frac{t}{\Delta_t^{q/2+1}} \right) \leq C \frac{1}{\varepsilon} \left(\frac{1}{\sqrt{N}} + \frac{1}{\sqrt{t}} + \frac{N}{t^q} \right).
$$

We finally used that $\Delta_t \sim t^{4/(q+1)/2}$, which implies that $\sqrt{\Delta_t / t} \sim \sqrt{1/(2t^{q+1}/(q+1))}$, that $N / \Delta_t^{(q+1)/2} \sim 2^{q+1/2} N t^{-2}$ and $t / \Delta_t^{q/2+1} \sim 2^{q+1/2} t^{-q-3} / (q+1)$, and $t / \Delta_t^{q/2+1} \sim 2^{q+1/2} / \sqrt{t^{1-4/(q+1)}}$. \(\square\)

Proof of Corollary 4. Recall that we assume $H(q)$ for some $q > 3$. We fix $\mu > 0$, $\Lambda > 0$ and $p \in (0, 1)$ such that $\Delta p \in (0, 1)$. We define $u = \mu / (1 - \Lambda p)$, $v = \mu^2 \Lambda^2 p (1-p) / (1 - \Lambda p)^2$ and $w = \mu / (1 - \Lambda p)^3$. It holds that $(u, v, w) \in D$ (which would not be the case if $\Delta p = 0$) and $\Psi(u, v, w) = (\mu, \Lambda, p)$. Furthermore, Ψ is obviously of class C^∞ on D, it is in particular locally Lipschitz continuous. As a consequence, there is a constant $c \in (0, 1)$ (depending on μ, Λ, p) such
that for any $N \geq 1$, any $t \geq 1$, any $\epsilon \in (0, 1/e)$,
\[
\Pr \left(\left\| \Psi(N, V_t, W_{N, t}) - (\mu, \Lambda, \rho) \right\| \geq \frac{\epsilon}{N} \right) \leq \Pr \left(\left\| \Psi(N, U_t, W_{N, t}) - (\mu, \Lambda, \rho) \right\| \geq \frac{\epsilon}{N} \right)
\leq C \left(\frac{1}{N} + \frac{1}{t} + \frac{\sqrt{N}}{t^2} + \frac{N}{t^2} + \frac{1}{\sqrt{t^{1-4/(q+1)}}} \right)
\]
by Theorem 3. Using next that $q > 3$, that $t \geq 1$ and $N \geq 1$, and that either $N^{1/2}t - 1 \geq 1$ (whence the inequality below is trivial) or $N^{1/2}t - 1 < 1$ (whence $Nt - 1 \leq N^{1/2}t - 1$), we find
\[
\Pr \left(\left\| \Psi(N, V_t, W_{N, t}) - (\mu, \Lambda, \rho) \right\| \geq \frac{\epsilon}{N} \right) \leq C \left(\frac{1}{\sqrt{N}} + \frac{\sqrt{N}}{t^2} + \frac{1}{t^{1-4/(q+1)}} \right).
\]
Noting that $t^{-1} \left(1 - 1/(q+1) \right) = \left(N^{1/4}t^{-1} - 1 \right)/N \leq N^{-1/4} + N^{1/2}t^{-1} - 1 \leq 1/(q+1)$ concludes the proof.

We finally give the

Proof of Remark 2. Lemma 16-(ii) with $r = 1$ and $s = 0$ tells us that on Ω_N^1, $|E_t^N - \mu^N| \leq C$. By Lemma 18, we know that $E_t^N = E_t^N - \mu^N |t| \leq C(t/N)^{1/2}$, still on Ω_N^1, and, by Proposition 14, $E_t^N |t| = 1/(1 - \Lambda p) \leq C N^{-1}$. We easily deduce that
\[
E_t^N |Z_t^N - \mu^N (1 - \Lambda p)|^-t | \leq C(1 + (t/N)^{1/2} + t/N) \leq C(1 + t/N).
\]
Since $\Pr(\Omega_N^1) \geq 1 - Ce^{-cN}$ by Lemma 13, we find that for any $\epsilon > 0$,
\[
\Pr \left(\left| \frac{Z_t^N}{t} - \mu \right| \geq \frac{\epsilon}{1 - \Lambda p} \right) \leq C e^{-cN} + \frac{C}{\epsilon} \left(\frac{1}{t} + \frac{1}{N} \right).
\]
The conclusion follows.

5. The supercritical case

The goal of this section is to prove Theorem 6. In Subsection 5.1, we study precisely the Perron-Frobenius eigenvalue and eigenvector of the matrix with nonnegative entries $A_N(i, j) = N^{-1} \theta_{ij}$. In Subsection 5.2, we state and prove a few results on some series involving φ^n. A few preliminary stochastic analysis is handled in Subsection 5.3. We finally conclude the proof in Subsection 5.4.

5.1. Perron-Frobenius analysis of the random matrix A_N. We recall that the norms $\| \cdot \|_r$ on \mathbb{R}^N and $\| \cdot \|_r$ on $\mathcal{M}_{N \times N} (\mathbb{R})$ were defined in Subsection 4.1. We denote by $(\epsilon_1, \ldots, \epsilon_N)$ the canonical basis of \mathbb{R}^N and by $1_N = \sum_{i=1}^N \epsilon_i$ the vector will all entries equal to 1.

Notation 32. We consider the matrix $A_N(i, j) = N^{-1} \theta_{ij}$ and the event
\[
\Omega_N^2 = \left\{ \frac{1}{N} \sum_{i,j=1}^N A_N(i, j) > \frac{p}{2} \text{ and for all } i, j = 1, \ldots, N, \ |NA_N^2(i, j) - p^2| < \frac{p^2}{2N^{3/8}} \right\}.
\]
Actually, $3/8$ could be replaced by any other exponent in $[3/8, 1/2)$. We first show that Ω_N^2 has a high probability.

Lemma 33. Assume that $p \in (0, 1]$. It holds that $\Pr(\Omega_N^2) \geq 1 - Ce^{-cN^{1/4}}$.

Proof. We recall the Hoeffding inequality [21] for a Binomial(n, q)-distributed random variable X: for all $x \geq 0$, it holds that $\Pr(|X - nq| \geq x) \leq 2 \exp(-2x^2/n)$.

Since $N \sum_{i,j=1}^N A_N(i,j) = \sum_{i,j=1}^N \theta_{ij} \sim$ Binomial(N^2, p), $\Pr(N^{-1} \sum_{i,j=1}^N A_N(i,j) \leq p/2) \leq \Pr(|N \sum_{i,j=1}^N A_N(i,j) - N^2p| \geq 2N^2p/2) \leq 2 \exp(-N^2p^2/2)$.

For each $i \neq j$, we write $N^2A_N^2(i,j) = \sum_{k=1}^{N^2} \theta_{ik}\theta_{kj} = Z_{ij}^N + \theta_{ii}\theta_{jj} + \theta_{ij}\theta_{ji}$, where Z_{ij}^N follows a Binomial($N - 2$, p^2) distribution. We thus have $|N^2A_N^2(i,j) - Z_{ij}^N| \leq 2$. This obviously extends to the case where $i = j$. Hence for any i, j, $|N A_N^2(i,j) - p^2| \geq p^2/(2N^{3/8})$ implies that $|Z_{ij}^N - (N - 2)p^2| \geq p^2N^{5/8}/2 - 4$ and thus, if $N \geq (16/p^2)^{8/5}$, that $|Z_{ij}^N - (N - 2)p^2| \geq p^2N^{5/8}/4$. By the Hoeffding inequality, $\Pr(|NA_N^2(i,j) - p^2| \geq p^2/(2N^{3/8})) \leq 2 \exp(-p^4N^{5/8}/(8(N - 2))) \leq 2 \exp(-p^4N^{1/4}/8)$.

All this shows that $\Pr((\Omega_N^2)^c) \leq 2 \exp(-N^2p^2/2) + 2N^2 \exp(-N^1pN^{1/4}/8)$ for all $N \geq (16/p^2)^{8/5}$. The conclusion easily follows: we can find $0 < c < C$ depending only on p such that for all $N \geq 1$, $\Pr((\Omega_N^2)^c) \leq Ce^{-cN^{1/4}}$.

□

Next, we apply the Perron-Frobenius theorem.

Lemma 34. Assume that $p \in (0, 1]$. On Ω_N^2, the spectral radius ρ_N of A_N is a simple eigenvalue of A_N and $\rho_N \in [p(1 - 1/(2N^{3/8})), p(1 + 1/(2N^{3/8}))]$. There is a unique eigenvector $V_N \in \mathbb{R}_+^N$ of A_N for the eigenvalue ρ_N such that $\|V_N\| = \sqrt{N}$. We also have $V_N(i) > 0$ for all $i = 1, \ldots, N$.

Proof. The matrix A_N has nonnegative entries and is irreducible on Ω_N^2, since A_N has positive entries. We thus infer from the Perron-Frobenius theorem that on Ω_N^2, ρ_N is a simple eigenvalue of A_N, that there is a unique corresponding eigenvector V_N with nonnegative entries such that $\|V_N\| = \sqrt{N}$ and that $V_N(i) > 0$ for all $i = 1, \ldots, N$.

Since $NA_N^2(i,j) \in [p^2(1 - 1/(2N^{3/8})), p^2(1 + 1/(2N^{3/8}))]$ for all $i, j = 1, \ldots, N$ on Ω_N^2, we deduce from $\rho_N^2V_N = A_N^2V_N$ that $\rho_N^2\|V_N\| = \sum_{i,j=1}^N A_N^2(i,j)V_N(j) \leq p^2(1 + 1/(2N^{3/8}))\|V_N\|$, whence $\rho_N^2 \leq p^2(1 + 1/(2N^{3/8}))$ and thus $\rho_N \leq p(1 + 1/(2N^{3/8}))$. Similarly, $\rho_N^2\|V_N\| = \sum_{i,j=1}^N A_N^2(i,j)V_N(j) \geq p^2(1 - 1/(2N^{3/8}))\|V_N\|$, whence $\rho_N^2 \geq p^2(1 - 1/(2N^{3/8}))$ and thus $\rho_N \geq p(1 - 1/(2N^{3/8}))$.

□

We now gather a number of important facts.

Lemma 35. Assume that $p \in (0, 1]$. There is $N_0 \geq 1$ (depending only on p) such that for all $N \geq N_0$, on Ω_N^2, the following properties hold true for all $i, j, k, l = 1, \ldots, N$:

(i) for all $n \geq 2$, $A_N^n(i,j) \leq (3/2)A_N^n(k,l)$,

(ii) $V_N(i) \in [1/2, 2]$,

(iii) for all $n \geq 0$, $\|A_N^n1_N\| \leq [\sqrt{N}\rho_N^n/2, 2\sqrt{N}\rho_N^n]$,

(iv) for all $n \geq 2$, $A_N^n(i,j) \in [\rho_N^n/(3N), 3\rho_N^n/N]$,

(v) for all $n \geq 0$, all $r \in [1, \infty]$, $\|A_N^n1_N\|^{-1}A_N^n1_N - \|V_N\|^{-1}V_N\|^{-1} \leq 3(2N^{-3/8})^{(n/2)+1}$,

(vi) for all $n \geq 0$, all $r \in [1, \infty]$, $\|A_N^n(i,j)\|^{-1}A_N^n(i,j) - \|V_N\|^{-1}V_N\|^{-1} \leq 12(2N^{-3/8})^{(n/2)}$,

(vii) for all $n \geq 1$, $\|A_N^n1_N\| \leq 3\rho_N^n/p$.

Sylvain Delattre and Nicolas Fournier

38
The proof requires a quantitative version of the Perron-Frobenius theorem due to G. Birkhoff [7]. It is based on the use of the Hilbert projective distance.

Notation 36. For \(x = (x_i)_{i=1,\ldots,N} \) and \(y = (y_i)_{i=1,\ldots,N} \) in \((0,\infty)^N \), we set
\[
d_N(x, y) = \log \left(\frac{\max_{i=1,\ldots,N}(x_i/y_i)}{\min_{i=1,\ldots,N}(x_i/y_i)} \right).
\]
We have \(d_N(x, y) = d_N(y, x) = d_N(x, \lambda y) \) for all \(\lambda > 0 \) and \(d_N(x, y) \leq d_N(x, z) + d_N(z, y) \). Finally, \(d_N(x, y) = 0 \) if and only if \(x \) and \(y \) are colinear.

The result of Birkhoff quantifies the projection on the Perron-Frobenius vector.

Theorem 37 (Birkhoff [7], Cavazos-Cadena [11]). For any \(A \in M_{N \times N}(\mathbb{R}) \) with positive entries and any \(x \) and \(y \) in \((0,\infty)^N \), we have \(d_N(Ax, Ay) \leq k_A d_N(x, y) \), where
\[
\Gamma_A = \max_{i,j,k,l=1,\ldots,N} A(i,k)A(j,l) = \frac{A(i,j)}{A(i,i)A(j,j)} \quad \text{and} \quad k_A = \frac{\sqrt{\Gamma_A - 1}}{\sqrt{\Gamma_A + 1}} \leq \frac{\Gamma_A - 1}{4}.
\]

In this context, the following remark gives the following estimates.

Remark 38. Assume that \(p \in (0,1] \). Then on \(\Omega^2_N \), it holds that for all \(x, y \in (0,\infty)^N \), we have (i) \(d_N(A_Nx, A_Ny) \leq d_N(x, y) \) and (ii) \(d_N(A_N^2x, A_N^2y) \leq 2N^{-3/8}d_N(x, y) \).

Proof. On \(\Omega^2_N \), we have
\[
A_N^2(i,j) \in [p^2N^{-1}(1 - 1/(2N^{3/8})), p^2N^{-1}(1 + 1/(2N^{3/8}))].
\]
This implies that for each \(i = 1, \ldots, N \), \(\sum_{k=1}^N A_N(i,k) > 0 \) (because else, \(A_N^2(i,j) \) would vanish for all \(j = 1, \ldots, N \)). Thus for \(x, y \in (0,\infty)^N \), we have \(A_Nx, A_Ny \in (0,\infty)^N \) so that \(d_N(A_Nx, A_Ny) \) is well-defined. We put \(m = \min_i(x_i/y_i) \) and \(M = \max_i(x_i/y_i) \). Then we have \(m(A_Ny)_i \leq (A_Nx)_i \leq M(A_Ny)_i \) for all \(i \), whence \(d_N(A_Nx, A_Ny) \leq \log(M/m) = d_N(x, y) \), which proves (i). For point (ii), it suffices to use Theorem 37, and to note that, by (11),
\[
\Gamma_{A_N^2} = \max_{i,j,k,l=1,\ldots,N} A_N^2(i,k)A_N^2(j,l) \leq \frac{1}{\left(1 - 1/(2N^{3/8})\right)^2} \leq 1 + 8N^{-3/8},
\]
whence \(k_{A_N^2} \leq (\Gamma_{A_N^2} - 1)/4 \leq 2N^{-3/8} \). \(\square \)

We will also use the following easy remark.

Lemma 39. For all \(r \in [1,\infty] \) and all \(x, y \in (0,\infty)^N \) such that \(d_N(x, y) \leq 1 \), we have the inequality
\[
\|\|x\|_r^r - \|y\|_r^r\|_r \leq 3d_N(x, y).
\]

Proof. We fix \(r \in [1,\infty] \) and assume without loss of generality that \(\|x\|_r = \|y\|_r = 1 \). We set \(m = \min_i(x_i/y_i) \) and \(M = \max_i(x_i/y_i) \). Since \(\|x\|_r = \|y\|_r \), it holds that \(m \leq 1 \leq M \). Using that \(1 \geq d_N(x, y) = \log(1 + (M - m)/m) \), we deduce that \((M - m)/m \leq e - 1 \leq 2 \). Since \(\log(1 + u) \geq u/3 \) on \([0,2] \), we conclude that \(d_N(x, y) \geq (M - m)/(3m) \geq (M - m)/3 \). But for all \(i \), we have \(x_i \in [m y_i, M y_i] \), whence \(|x_i - y_i| \leq (M - m)y_i \). Thus \(\|x - y\|_r \leq (M - m)\|y\|_r = (M - m) \leq 3d_N(x, y) \). \(\square \)

We can now give the

Proof of Lemma 35. We work on \(\Omega^2_N \) during the whole proof.

Step 1. We first check that \(d_N(1_N, V_N) \leq 2N^{-3/8} \). We start from \(A_N^2V_N = \rho_N V_N \), so that for all \(i \), \(V_N(i) = \rho_N^{-2} \sum_{j=1}^N A_N^2(i,j)V_N(j) \). But using (11) and setting \(\kappa_N = p^2\rho_N^{-2}N^{-1} \sum_{j=1}^N V_N(j) \), we
find that $V_N(i) \in [\kappa_N(1 - 1/(2N^{3/8})), \kappa_N(1 + 1/(2N^{3/8}))]$. Consequently, $\max_i V_N(i) / \min_i V_N(i) \leq (1 + 1/(2N^{3/8}))(1 - 1/(2N^{3/8})) \leq 1 + 2N^{-3/8}$. Hence
\[
d_N(1_N, V_N) \leq \log[(1 + 1/(2N^{3/8}))(1 - 1/(2N^{3/8}))] \leq \log(1 + 2N^{-3/8}) \leq 2N^{-3/8}.
\]

Step 2. Here we show that for all i, $V_N(i) \in [(1 + 2N^{-3/8})^{-1}, (1 + 2N^{-3/8})]$. This will imply point (ii) (for N large enough so that $2N^{-3/8} \leq 1$). We introduce $m = \min_i V_N(i)$ and $M = \max_i V_N(i)$.

We have seen in Step 1 that $M/m \leq 1 + 2N^{-3/8}$. Recalling that $\|V_N\|_2 = \sqrt{N}$ by definition, we deduce that $N = \sum_{i=1}^N (V_N(i))^2 \leq NM^2 \leq N(1 + 2N^{-3/8})^2m^2$, whence $m \geq (1 + 2N^{-3/8})^{-1}$. Similarly, $N = \sum_{i=1}^N (V_N(i))^2 \geq Nm^2 \geq N(1 + 2N^{-3/8})^{-2}M^2$, whence $M \leq (1 + 2N^{-3/8})^{-1}$.

Step 3. We verify that for all $n \geq 0$, $d_N(A_N^n 1_N, V_N) \leq (2N^{-3/8})^{[n/2]} + 1$. By Lemma 39, this will imply point (v) for all N large enough so that $2N^{-3/8} \leq 1$. Using that $A_N^n V_N = \rho_N^n V_N$, we deduce that $d_N(A_N^n 1_N, V_N) \leq d_N(A_N^n 1_N, A_N^n V_N)$. Hence for all n even, we deduce from Remark 38-(ii) and Step 1 that $d_N(A_N^n 1_N, V_N) \leq (2N^{-3/8})^{n/2}d_N(1_N, V_N) \leq (2N^{-3/8})^{n/2}$. When n is odd, we simply use that $d_N(A_N^n 1_N, V_N) = d_N(A_N^n 1_N, A_N^n V_N) \leq d_N(A_N^{n-1} 1_N, V_N)$ by Remark 38-(i).

Step 4. We now prove (vi). We fix $r \in [1, \infty)$ and $j \in \{1, \ldots, N\}$. The result is obvious if $n = 0$ or $n = 1$ because then $\left[|||A_N^n e_j||| - 1 A_N^n e_j - ||V_N 1_N|| - 1 V_N\right]_r \leq 2 \leq 12(2N^{-3/8})^{[n/2]}$.

By Remark 38-(ii), $d_N(A_N^n e_j, V_N) = d_N(A_N^n e_j, A_N^n V_N) \leq (2N^{-3/8})^{k-1}d_N(A_N^{k-1} e_j, V_N)$ for all $k \geq 1$.

We next write $d_N(A_N^k e_j, V_N) \leq d_N(A_N^k e_j, 1_N) + d_N(1_N, V_N)$. By Step 1, we have $d_N(1_N, V_N) \leq \log[(1 + N^{-3/8}/2)/(1 + N^{-3/8}/2)]$. Furthermore, we deduce from (11) that $d_N(A_N^k e_j, 1_N) = \log[\max\{A_N^k(i, j)\} / \min\{A_N^k(i, j)\}] \leq \log[(1 + N^{-3/8}/2)/(1 + N^{-3/8}/2)]$. All in all, we find that $d_N(A_N^k e_j, V_N) \leq \log[(1 + N^{-3/8}/2)^2/(1 - N^{-3/8}/2)] \leq \log(1 + 8N^{-3/2}) \leq 8N^{-3/2}$.

Hence for all $k \geq 1$, $d_N(A_N^k e_j, V_N) \leq 8N^{-3/8}(2N^{-3/8})^{k-1} = 4(2N^{-3/8})^k$. We also have, by Remark 38-(i), $d_N(A_N^{k+1} e_j, V_N) = d_N(A_N^{k+1} e_j, A_N^n V_N) \leq d_N(A_N^k e_j, V_N)$. Thus for all $n \geq 2$, $d_N(A_N^n e_j, V_N) \leq 4(2N^{-3/8})^{[n/2]}$. This implies that indeed, $\left[|||A_N^n e_j||| - 1 A_N^n e_j - ||V_N 1_N|| - 1 V_N\right]_r \leq 12(2N^{-3/8})^{[n/2]}$ by Lemma 39, if N is large enough so that $2N^{-3/8} \leq 1/4$.

Step 5. We check (i). Using Step 2, we see that for all $j = 1, \ldots, N$, all $n \geq 2$,
\[
d_N(A_N^n e_j, V_N) = \log\left(\max\{A_N^n(i, j)/V_N(i)\} / \min\{A_N^n(i, j)/V_N(i)\}\right) \geq \log\left(\max\{A_N^n(i, j)\} / \min\{A_N^n(i, j)\}\right) \times (1 + 2N^{-3/8})^2.
\]

But for all $n \geq 2$, using Remark 38-(i), we see that $d_N(A_N^n e_j, V_N) = d_N(A_N^n e_j, A_N^{n-2} V_N) \leq d_N(A_N^n e_j, V_N) \leq \log(1 + 8N^{-3/8})$ as seen in Step 4. We conclude that
\[
\max_i A_N^n(i, j) / \min_i A_N^n(i, j) \leq (1 + 2N^{-3/8}) \times (1 + 8N^{-3/8}).
\]

Using the same arguments with the transpose matrix A^T_N (which satisfies exactly the same assumptions as A_N on Ω^T_N), we see that for all $i = 1, \ldots, N$, $\max_j A_N^n(i, j) / \min_j A_N^n(i, j) \leq (1 + 2N^{-3/8})^2 \times (1 + 8N^{-3/8})$.

Finally, we conclude that for all $n \geq 2$,
\[
\max_{i,j} A_N^n(i, j) / \min_{i,j} A_N^n(i, j) \leq (1 + 2N^{-3/8})^4 \times (1 + 8N^{-3/8})^2.
\]
This is indeed smaller than 3/2 if N is large enough.

Step 6. We now verify (iii). We write $A_N^N 1_N = ||A_N^N 1_N||_2(N^{-1/2} V_N + Z_{N,n})$, where $Z_{N,n} = ||A_N^N 1_N||_2^{-1} A_N^N 1_N - N^{-1/2} V_N$. We know by (v) (with $r = 2$) that $||Z_{N,n}||_2 \leq 3(2N^{-3/8})^{n/2} + 1$. We next write, for each $n \geq 0$, $A_N^{n+1} 1_N = ||A_N^{n+1} 1_N||_2(N^{-1/2} \rho_N V_N + A_N Z_{N,n})$. Using that $||V_N||_2 = \sqrt{N}$ and that $||A_N||_2 \leq 1$ (which immediately follows from the fact that $0 \leq A_N(i,j) \leq 1/N$), we conclude that $||A_N^{n+1} 1_N||_2 - \rho_N ||A_N^n 1_N||_2 \leq 3||A_N^n 1_N||_2(2N^{-3/8})^{n/2} + 1$.

We now set $x_n = ||A_N^n 1_N||_2/(\sqrt{N} \rho_N^n)$. For all $n \geq 0$, we have

$$|x_{n+1} - x_n| \leq 3x_n(2N^{-3/8})^{n/2} + 1/\rho_N \leq 6x_n(2N^{-3/8})^{n/2} + 1/p,$$

because $\rho_N \geq p/2$ on Ω_N^2, see Lemma 34. If now N is large enough so that $6(2N^{-3/8})^{1/2} / p \leq 1/2$, we easily conclude, using that $x_0 = 1$, that, for all $n \geq 1$,

$$x_n \in \left[\prod_{k=1}^{n} (1 - 6(2N^{-3/8})^{(k/2) + 1} / p), \prod_{k=1}^{n} (1 + 6(2N^{-3/8})^{(k/2) + 1} / p) \right],$$

which is included in $[1/2, 2]$ if N is large enough (depending only on p). Since $x_0 = 1$, we thus have $x_n \in [1/2, 2]$ for all $n \geq 0$, and thus $||A_N^n 1_N||_2 \in [\sqrt{N} \rho_N^n / 2, 2\sqrt{N} \rho_N^n]$ for all $n \geq 0$.

Step 7. Here we prove (iv). We fix $n \geq 2$ and set $m = \min_{i,j} A_N^n(i,j)$ and $M = \max_{i,j} A_N^n(i,j)$. We know from (i) that $M / m \leq 3/2$. Starting from point (iii), we write $\sqrt{N} \rho_N^n / 2 \leq ||A_N^n 1_N||_2 \leq \left(\sum_{i=1}^{N} (\sum_{j=1}^{N} A_N^n(i,j))^2 \right)^{1/2} \leq N^{3/2} / M \leq 3N^{3/2}/m_2$, whence $m \geq \rho_N^n / (3N)$. By the same way, $2\sqrt{N} \rho_N^n \geq ||A_N^n 1_N||_2 \geq N^{3/2} / m_2 \geq 2N^{3/2}/M/3$, whence $M \leq 3\rho_N^n / N$.

Step 8. It only remains to check (vii). We know from (iv) that for all $n \geq 2$, $A_N^n(i,j) \leq 3\rho_N^n / N \leq 3\rho_N^n / (pN)$. And for $n = 1$, $A_N^n(i,j) \leq 1/N \leq 3\rho_N / (pN)$ because $\rho_N \geq p/3$ on Ω_N^2, see Lemma 34. We conclude that for all $n \geq 1$, $A_N^n(i,j) \leq 3\rho_N^n / (pN)$. This immediately implies that for all $n \geq 1$,

$$||A_N^n e_j||_2 \leq \left(\sum_{i=1}^{N} (A_N^n(i,j))^2 \right)^{1/2} \leq 3\rho_N^n / (p\sqrt{N})$$

and $||A_N^n 1_N||_\infty = \max_i \sum_{j=1}^{N} A_N^n(i,j) \leq 3\rho_N^n / p$. Finally, for $n = 0$, we of course have $||A_N^0 1_N||_\infty = 1 \leq 3\rho_N^n / p$. \square

Finally, the following tedious result is crucial for our estimation method.

Proposition 40. We assume that $p \in (0,1]$ and we introduce, on Ω_N^2, $\tilde{V}_N = N^{-1} \sum_{i=1}^{N} V_N(i)$ and

$$U_N^\infty = \sum_{i=1}^{N} \left(\frac{V_N(i) - \tilde{V}_N}{V_N} \right)^2.$$

There is $N_0 \geq 1$ and $C > 0$ (depending only on p) such that for all $N \geq N_0$,

$$\mathbb{E} \left[1_{\Omega_N^5} \left| U_N^\infty - \left(\frac{1}{p} - 1 \right) \right| \right] \leq \frac{C}{\sqrt{N}} \quad \text{and} \quad \mathbb{E} \left[1_{\Omega_N^5} ||V_N - \tilde{V}_N 1_N||_2^2 \right] \leq C.$$

Proof. We work with N large enough so that we can apply Lemma 35. We introduce the vectors $L_N = A_N 1_N$ and $L_N = A_N^0 1_N$, we set $\tilde{L}_N = N^{-1} \sum_{i=1}^{N} L_N(i)$, $\tilde{L}_N = N^{-1} \sum_{i=1}^{N} L_N(i)$,

$$H_N = \sum_{i=1}^{N} \left(\frac{L_N(i) - \tilde{L}_N}{L_N} \right)^2 \quad \text{and} \quad \mathcal{H}_N = \sum_{i=1}^{N} \left(\frac{L_N(i) - \tilde{L}_N}{L_N} \right)^2.$$

We checked in the proof of Proposition 14-Step 2 that (i) $\mathbb{E} ||\tilde{L}_N - p||^2 \leq CN^{-2}$, (ii) $\mathbb{E} ||L_N - \tilde{L}_N 1_N||_2^2 \leq C$, (iii) $\mathbb{E}(||L_N - \tilde{L}_N 1_N||_2^2 - p(1-p))^2 \leq CN^{-1}$, (iv) $\mathbb{E} ||A_N L_N - \tilde{L}_N L_N||_2^2 \leq CN^{-1}$.

We also recall that $\bar{L}_N \leq 1$ and $||A_N||_2 \leq 1$ (simply because $0 \leq A_N(i,j) \leq 1/N$). Furthermore, on Ω^2_N, it holds that $\bar{L}_N = N^{-1} \sum_{j=1}^N A_N(i,j) \geq p/2$, that $\bar{L}_N = N^{-1} \sum_{j=1}^N A_N(i,j) \geq \rho_N^p/3 \geq p^6/192$ (by Lemma 35-(iv) and because $\rho_N \geq p/2$ by Lemma 34) and that $\bar{V}_N \geq 1/2$ (by Lemma 35-(ii)).

Step 1. We show that on Ω^2_N, $\Delta_N = |\mathcal{U}_N^2 - \mathcal{H}_N| \leq CN^{-1/2}$. A simple computation shows that

$$\Delta_N = \left| \sum_{i=1}^N \left(\frac{V_N(i)}{V_N} \right)^2 - \left(\frac{\mathcal{L}_N(i)}{\mathcal{L}_N} \right)^2 \right| \leq \left(\sum_{i=1}^N \frac{|V_N(i) - \mathcal{L}_N(i)|}{\mathcal{L}_N} \right) \left(\max_i \left(\frac{V_N(i)}{V_N} + \frac{\mathcal{L}_N(i)}{\mathcal{L}_N} \right) \right) = S_NT_N,$$

the last equality being a definition.

Lemma 35-(ii) implies that $\max_i(V_N(i)/V_N) \leq \max_i V_N(i)/\min_i V_N(i) \leq 4$ and Lemma 35-(i) implies that $\max_i(\mathcal{L}_N(i)/\mathcal{L}_N) \leq \max_i \mathcal{L}_N(i)/\min_i \mathcal{L}_N(i) \leq 3/2$ because $\mathcal{L}_N = A_N^0 1_N$. Thus $T_N \leq 4 + 3/2 \leq 6$. Next, it holds that $S_N = N \parallel A_N^0 1_N \parallel_1^{-1} A_N^0 1_N - \parallel V_N 1_N \parallel_1^{-1} V_N ||_1$. We thus infer from Lemma 35-(v) that $S_N \leq 3N(2N^{-3/8})^4 = 48N^{-1/2}$. The conclusion follows.

Step 2. We next prove that $\mathbb{E}[1_{\Omega^2_N} | \mathcal{H}_N - H_N |] \leq CN^{-1/2}$. We first write

$$||\mathcal{L}_N - (\bar{L}_N)^5 L_N||_2 = ||A_N^0 1_N - (\bar{L}_N)^5 A_N 1_N||_2 \leq \sum_{k=1}^5 ||(\bar{L}_N)^{5-k} A_{N}^{k+1} 1_N - (\bar{L}_N)^{6-k} A_N^k 1_N||_2.$$

Using that $\bar{L}_N \leq 1$ and $||A_N||_2 \leq 1$, we deduce that

$$||\mathcal{L}_N - (\bar{L}_N)^5 L_N||_2 \leq 5 ||A_N^0 1_N - \bar{L}_N A_N 1_N||_2 = 5 ||A_N L_N - \bar{L}_N L_N||_2.$$

We thus deduce from point (iv) recalled above that $\mathbb{E}[||\mathcal{L}_N - (\bar{L}_N)^5 L_N||_2^2] \leq CN^{-1}$. But it holds that $||\mathcal{L}_N - (\bar{L}_N)^5 L_N||_2 = I_N + J_N$, where $I_N = ||(\mathcal{L}_N - \bar{L}_N 1_N) - (\bar{L}_N)^5(L_N - \bar{L}_N 1_N)||_2$ and $J_N = ||\bar{L}_N 1_N - (\bar{L}_N)^6 1_N||_2 = \sqrt{N} |\bar{L}_N - (\bar{L}_N)^6|$. Consequently, $\mathbb{E}[I_N^2] + \mathbb{E}[J_N^2] \leq CN^{-1}$. Using now that

$$H_N = \frac{||L_N - \bar{L}_N 1_N||_2^2}{(L_N)^2} = \frac{||L_N^5 L_N - \bar{L}_N L_N||_2^2}{(L_N)^2} \quad \text{and} \quad \mathcal{H}_N = \frac{||\mathcal{L}_N - \bar{L}_N 1_N||_2^2}{(\mathcal{L}_N)^2},$$

the facts that $\bar{L}_N \geq p^6/192$ and $(\bar{L}_N)^6 \geq p^6/64$ on Ω^2_N and that the map $x \mapsto x^{-2}$ is globally Lipschitz and bounded on $[p^6/192, \infty)$, we conclude that, still on Ω^2_N,

$$|H_N - \mathcal{H}_N| \leq C \left(||(\bar{L}_N)^5(L_N - \bar{L}_N 1_N)||_2^2 ||(\bar{L}_N)^6 - \bar{L}_N|| + \left| \left| \frac{||\mathcal{L}_N - \bar{L}_N 1_N||_2^2 - ||(L_N^5 L_N - \bar{L}_N L_N)||_2^2}{(L_N)^2} \right| \right| \right).$$

Using now the inequality $|a^2 - b^2| \leq (a - b)^2 + 2|a - b|$ for $a, b \geq 0$, we deduce that

$$|H_N - \mathcal{H}_N| \leq C \left(||(L_N^5 (L_N - \bar{L}_N 1_N)||_2^2 N^{-1/2} J_N + I_N^2 + ||(L_N^5 (L_N - \bar{L}_N 1_N)||_2^2 I_N^2 \right) \leq C \left(||L_N - \bar{L}_N 1_N||_2^2 N^{-1/2} J_N + I_N^2 + ||L_N - \bar{L}_N 1_N||_2^2 I_N^2 \right)$$

because $\bar{L}_N \leq 1$. Using the Cauchy-Schwarz inequality, that $\mathbb{E}[I_N^2] + \mathbb{E}[J_N^2] \leq CN^{-1}$ and that $\mathbb{E}[||L_N - \bar{L}_N 1_N||_2^2] \leq C$ by point (ii) recalled above, we conclude that $\mathbb{E}[1_{\Omega^2_N} | \mathcal{H}_N - H_N |] \leq CN^{-1/2}$.

Step 3. Here we check that \(\mathbb{E}[1_{\Omega_N^2}|H_N - (1/p - 1)|] \leq CN^{-1/2} \). Since \(\bar{L}_N \geq p/2 \) on \(\Omega_N^2 \) and since \(x \mapsto x^{-2} \) is bounded and globally Lipschitz continuous on \([p/2, \infty) \), we can write
\[
\left| H_N - \left(\frac{1}{p} - 1 \right) \right| = \frac{\left| \bar{L}_N - \bar{L}_N 1_N \right|}{(L_N)^{2}} - \frac{p(1-p)}{p^2} \leq C \left(\bar{L}_N - p|p(1-p) + \left| \bar{L}_N - \bar{L}_N 1_N \right| - p(1-p) \right). \]

The conclusion follows, since as recalled in points (i) and (iii) above, \(\mathbb{E}[\bar{L}_N - p|] \leq CN^{-1} \) and \(\mathbb{E}[\left| \bar{L}_N - \bar{L}_N 1_N \right| - p(1-p)] \leq CN^{-1/2} \).

Step 4. Gathering Steps 1, 2 and 3, we immediately deduce that \(\mathbb{E}[1_{\Omega_N^2}|U_N - (1/p - 1)|] \leq CN^{-1/2} \). Since now \(\bar{V}_N \leq 2 \) on \(\Omega_N^2 \) by Lemma 35-(ii), \(\|V_N - \bar{V}_N 1_N\|_2 = (\bar{V}_N)^2 U_N \leq 4U_N \), whence of course, \(\mathbb{E}[1_{\Omega_N^2}|V_N - \bar{V}_N 1_N|] \leq C \).

5.2. Preliminary analytic estimates. We recall the following lemma, relying on some results of Feller [14] on convolution equations, that can be found in [13, Lemma 26-(b)].

Lemma 41. Let \(\psi : [0, \infty) \rightarrow [0, \infty) \) be integrable and such that \(\int_0^\infty \psi(t)dt > 1 \). Assume also that \(t \mapsto \int_0^t|\psi(s)| \) has at most polynomial growth and set \(\Gamma_t = \sum_{n \geq 0} \psi^n(t) \). Consider \(\alpha > 0 \) such that \(\int_0^\infty e^{-\alpha t} \psi(t)dt = 1 \). There are \(0 < c < C \) such that for all \(t \geq 0, 1 + \Gamma_t \in [ce^{\alpha t}, Ce^{\alpha t}] \).

Based on this, it is not hard to verify the following result.

Lemma 42. Assume A. Recall that \(\alpha_0 \) was defined in Remark 5 such that \(p \int_0^\infty e^{-\alpha_0 t} \varphi(t)dt = 1 \) and \(\rho_N \) was defined, for each \(N \geq 1 \), in Lemma 34. We now set \(\Gamma_t^N = \sum_{n \geq 0} \rho_N^n \varphi^n(t) \). For any \(\eta > 0 \), we can find \(N_\eta \geq 1 \) and \(c_\eta < C_\eta \) (depending only on \(p, \varphi \) and \(\eta \)) such that for all \(N \geq N_\eta \), on \(\Omega_N^2 \), for all \(t \geq 0, 1 + \Gamma_t \in [c_\eta e^{(\alpha_0 - \eta)t}, C_\eta e^{(\alpha_0 + \eta)t}] \).

Proof. We only prove the result when \(\eta \in (0, \alpha_0) \), which of course suffices. We consider \(\rho^+ > p > \rho^-_\eta \) defined by \(\int_0^\infty e^{-(\alpha_0-\eta)t} \varphi(t)dt = 1/\rho^+ \) and \(\int_0^\infty e^{-(\alpha_0+\eta)t} \varphi(t)dt = 1/\rho^-_\eta \). We put \(\Gamma_t^+ = \sum_{n \geq 0} (\rho^+_n)^n \varphi^n(t) \) and \(\Gamma_t^- = \sum_{n \geq 0} (\rho^-_n)^n \varphi^n(t) \). Applying Lemma 41 with \(\psi = \rho^+_n \varphi \) and with \(\psi = \rho^-_n \varphi \), we deduce that there are some constants \(0 < c_\eta < C_\eta \) such that for all \(t \geq 0, c_\eta e^{(\alpha_0-\eta)t} \leq 1 + \Gamma_t^- \leq 1 + \Gamma_t^+ \leq C_\eta e^{(\alpha_0+\eta)t} \). But on \(\Omega_N^2 \), we know from Lemma 34 that \(\rho_N \in [p(1-N^{-3/8}/2), p(1+N^{-3/8}/2)] \). Thus for \(N \) large enough, we clearly have \(\rho_N \in [\rho^-_\eta, \rho^+_\eta] \), so that \(\Gamma_t^N \in [\Gamma_t^-, \Gamma_t^+] \). The conclusion follows.

We next gather a number of consequences of the above estimate that we will use later.

Lemma 43. Assume A. Recall that \(\alpha_0 \) was defined in Remark 5, that \(\rho_N \) was defined in Lemma 34 and that \(\Gamma_t^N = \sum_{n \geq 0} \rho_N^n \varphi^n(t) \). We also put \(v_t^N = \mu N^{-1/2} \sum_{n \geq 0} ||A_n^N 1_N||_2 \int_0^t s^\alpha \varphi^n(t-s)ds \). For any \(\eta > 0 \), we can find \(N_\eta \geq 1 \), \(t_\eta > 0 \) and \(0 < c_\eta < C_\eta \) (depending only on \(p, \mu, \varphi \) and \(\eta \)) such that for all \(N \geq N_\eta \), on \(\Omega_N^2 \),

(i) for all \(t \geq 0, v_t^N \leq C_\eta e^{(\alpha_0 + \eta)t} \),

(ii) for all \(t \geq t_\eta, v_t^N \geq c_\eta e^{(\alpha_0 - \eta)t} \),

(iii) for all \(t \geq 0, \sum_{n \geq 0} \rho_N^n (2N^{-3/8})^{|n/2|} \int_0^t \varphi^n(t-s)ds \leq C_\eta \),

(iv) for all \(t \geq 0, \sum_{n \geq 0} \rho_N^n t^{(\alpha_0 + \eta)s/2} \varphi^n(t-s)ds \leq C_\eta e^{(\alpha_0 + \eta)t} \),

(v) for all \(t \geq 0, \sum_{n \geq 0} \rho_N^n \int_0^t s^\alpha \varphi^n(t-s)ds \leq C_\eta e^{(\alpha_0 + \eta)t} \),
(vi) for all $t \geq 0$, $\int_0^t \int_0^s A^N_t \Gamma_{t-s}^N e^{(\alpha_0+\eta)(r+s)} dr ds \leq C_\eta e^{2(\alpha_0+\eta)t}$.

Proof. We fix $\eta > 0$ and work with N large enough and on Ω_2^N, so that we can use Lemmas 35 and 42.

We start with (i). We know from Lemma 35-(iii) that $\|A^N_t 1_N\|_2 \leq 2\sqrt{N} \rho_N$, whence $v_i^N \leq 2\mu \int_0^t s \Gamma_{t-s}^N ds \leq C_N \int_0^t s e^{(\alpha_0+\eta)(t-s)} ds = C_N e^{(\alpha_0+\eta)t} \int_0^t s e^{-\alpha_0(\eta+\eta)s} ds \leq C_\eta e^{(\alpha_0+\eta)t}$.

The LHS of point (iv) is nothing but $\int_0^t e^{(\alpha_0+\eta)(t-s)} \Gamma_{t-s}^N ds \leq C_N \int_0^t e^{(\alpha_0+\eta)s/2} e^{(\alpha_0+\eta)(t-s)} ds = C_\eta e^{(\alpha_0+\eta)t} \int_0^t s e^{(\alpha_0+\eta)s/2} ds \leq C_\eta e^{(\alpha_0+\eta)t}$.

Point (v) follows from point (iv). The LHS of point (vi) is smaller than $C_N \int_0^t e^{(\alpha_0+\eta)(t-s)} \int_0^s e^{(\alpha_0+\eta)(t-s)} e^{(\alpha_0+\eta)(\eta+\eta)} dr ds$, which equals $2C_N \int_0^t e^{(\alpha_0+\eta)(t-s)} \int_0^s e^{(\alpha_0+\eta)(t-s)} e^{(\alpha_0+\eta)(\eta+\eta)} dr ds = 2C_N e^{2(\alpha_0+\eta)t} \int_0^t s e^{(\alpha_0+\eta)s} ds \leq C_\eta e^{2(\alpha_0+\eta)t}$.

Setting $\Lambda = \int_0^\infty \varphi(t) dt$, the LHS of (iii) is bounded by $\sum_{n \geq 0} (\varphi N)^n (2N^{-3/8} [n/2])$ since $\rho_N \leq 2p$ on Ω_2^N by Lemma 34. This is uniformly bounded, as soon as N is large enough so that $2\Lambda (2N^{-3/8})^{1/2} \leq 1/2$.

We finally check (ii). We know from Lemma 35-(iii) that, on Ω_2^N, $\|A^N_t 1_N\|_2 \geq \sqrt{N} \rho_N/2$, whence $v_i^N \geq (\mu/2) \int_0^t s \Gamma_{t-s}^N ds \geq (\mu/2) \int_0^t s \Gamma_{t-s}^N dr ds \geq (\mu/2) \int_0^t \Gamma_{t-s}^N ds$ if $t \geq 2$. By Lemma 42, we thus have $v_i^N \geq (\mu/2) \int_0^1 \Gamma_{t-s}^N ds - 1 \geq (\mu/2) \varphi e^{(\alpha_0-\eta)(t-2)} - 1$. The conclusion easily follows: we can find $t_\eta \geq 2$ and $c_\eta > 0$ such that for all $t \geq t_\eta$, $v_i^N \geq c_\eta e^{(\alpha_0+\eta)t}$.

5.3. Preliminary stochastic analysis. We now prove a few estimates concerning the processes introduced in Notation 9. We recall that α_0 was defined in Remark 5 and that ρ_N and V_N were defined in Lemma 34. We start from Lemma 11 to write (with as usual $\varphi(t) dt = \delta_t(ds)$)

\begin{align}
\mathbb{E}_0[Z^N_t] &= \mu \sum_{n \geq 0} \left[\int_0^t s \varphi^n(t-s) ds \right] A_N^n 1_N = v_i^N V_N + I_i^N,
\end{align}

\begin{align}
U_t^N &= Z_t^N - \mathbb{E}_0[Z_t^N] = \sum_{n \geq 0} \int_0^t \varphi^n(t-s) A_N^n M_s^N ds = M_i^N + J_i^N,
\end{align}

where

\begin{align}
v_i^N &= \mu \sum_{n \geq 0} \frac{||A^N_t 1_N||_2}{\sqrt{N}} \int_0^t s \varphi^n(t-s) ds,
I_i^N &= \mu \sum_{n \geq 0} \left[\int_0^t s \varphi^n(t-s) ds \right] \left[A_N^n 1_N - \frac{||A^N_t 1_N||_2}{\sqrt{N}} V_N \right],
J_i^N &= \sum_{n \geq 1} \int_0^t \varphi^n(t-s) A_N^n M_s^N ds.
\end{align}

As usual, we denote by $I_t^{1,N}$ and $J_t^{1,N}$ the coordinates of I_t^N and J_t^N and by \bar{I}_t^N and \bar{J}_t^N their empirical mean. We start with some upperbounds concerning Z_t^N and U_t^N.

Lemma 44. Assume A. For all $\eta > 0$, there are $N_\eta \geq 1$ and $C_\eta > 0$ such that for all $N \geq N_\eta$, all $t \geq 0$, on Ω_2^N,
Lemma 45. Assume \(\max_{i=1,\ldots,N} E_\theta[(Z_i^{i,N})^2] \leq C_\eta e^{2(\alpha_0+\eta)t}\),
(ii) \(\max_{i=1,\ldots,N} E_\theta[(U_i^{i,N})^2] \leq C_\eta (N^{-1} e^{2(\alpha_0+\eta)t} + e^{(\alpha_0+\eta)t})\),
(iii) \(E_\theta[(U_i^{i,N})^2] \leq C_\eta N^{-1} e^{2(\alpha_0+\eta)t}\).

Proof. We fix \(\eta > 0\) and work with \(N\) large enough and on \(\Omega_2^N\), so that we can use Lemmas 35 and 43.

Step 1. We first verify that \(\|E_\theta[Z_i^{i,N}]\|_\infty \leq C_\eta e^{(\alpha_0+\eta)t}\). Using (12) and that \(\|A_N^2 1_N\|_\infty \leq C\rho_N^\eta\) for all \(n \geq 0\) by Lemma 35-(vi), we see that \(\|E_\theta[Z_i^{i,N}]\|_\infty \leq C \sum_{n \geq 0} \rho_N^{n} \int_0^t \varphi^s(t-s)ds\), whence the conclusion by Lemma 43-(v).

Step 2. We next show that for all \(i = 1,\ldots,N\), \(E_\theta[(J_i^{i,N})^2] \leq C_\eta N^{-1} e^{2(\alpha_0+\eta)t}\). We start from (16), which gives us
\[
E_\theta[(J_i^{i,N})^2] = \sum_{m,n \geq 0} \int_0^t \int_0^t \varphi^m(t-r) \varphi^n(t-s) \sum_{j,k=1} A_N^m(i,j) A_N^n(i,k) E_\theta[M_r^{j:N} M_s^{k:N}] dr ds.
\]

But we know from Remark 10 that \(E_\theta[M_r^{j:N} M_s^{k:N}] = 1_{(j=k)} E_\theta[Z_r^{j,N}] \leq C_\eta 1_{(j=k)} e^{(\alpha_0+\eta)(r+s)}\) by Step 1. Furthermore, \(\sum_{j=1}^N A_N^m(i,j) A_N^n(i,j) \leq \|A_N^m\|_2 \|A_N^n\|_2 \leq CN^{-1} \rho_N^{n+m}\) by Lemma 35-(vii) (because \(m, n \geq 1\)). We thus find, recalling that \(\Gamma_t^N = \sum_{n \geq 0} \varphi^n(t)\), that
\[
E_\theta[(J_i^{i,N})^2] = C_\eta N^{-1} \int_0^t \int_0^t \Gamma_{t-r}^N \Gamma_{t-s}^N e^{(\alpha_0+\eta)(r+s)} dr ds.
\]

The conclusion follows from Lemma 43-(vi).

Step 3. Point (ii) follows from the facts that \(U_i^{i,N} = M_i^{i,N} + J_i^{i,N}\), that \(E_\theta[(M_i^{i,N})^2] = E_\theta[Z_i^{i,N}] \leq C_\eta e^{(\alpha_0+\eta)t}\) by Remark 10 and Step 1 and that \(E_\theta[(J_i^{i,N})^2] \leq C_\eta N^{-1} e^{2(\alpha_0+\eta)t}\) by Step 2.

Step 4. Since \(Z_i^{i,N} = E_\theta[Z_i^{i,N}] + U_i^{i,N}\), we deduce from Steps 1 and 3 that \(E_\theta[(Z_i^{i,N})^2] \leq C_\eta (e^{2(\alpha_0+\eta)t} + e^{(\alpha_0+\eta)t}) + N^{-1} e^{2(\alpha_0+\eta)t} \leq C_\eta e^{2(\alpha_0+\eta)t}\), whence point (i).

Step 5. Finally, we write \(\bar{U}_t^N = M_t^N + J_t^N\). It is clear from Step 2 that \(E_\theta[(\bar{J}_t^N)^2] \leq C_\eta N^{-1} e^{2(\alpha_0+\eta)t}\). Remark 10 implies that \(E_\theta[(\bar{M}_t^N)^2] = N^{-2} \sum_{i=1}^N E_\theta[Z_i^{i,N}] \leq C_\eta N^{-1} e^{(\alpha_0+\eta)t}\) by Step 1. Point (iii) is checked.

We next show that the term \(\bar{I}_t^N\) is very small in the present scales.

Lemma 45. Assume A. For all \(\eta > 0\), there are \(N_\eta \geq 1\) and \(C_\eta > 0\) such that for all \(N \geq N_\eta\), all \(t \geq 0\), on \(\Omega_2^N\), \(\|\bar{I}_t^N\|_2 \leq C_\eta N^{1/8}\).

Proof. We fix \(\eta > 0\) and work with \(N\) large enough and on \(\Omega_2^N\), so that we can use Lemmas 35 and 43. Using the Minkowski inequality and then Lemma 35-(iii)-(v), we find
\[
\|\bar{I}_t^N\|_2 \leq \sum_{n \geq 0} \left(\int_0^t \varphi^n(t-s)ds \right) \left(\|A_N^n 1_N - \frac{\|A_N^n 1_N\|_2}{\sqrt{N}} V_N\|_2 \right) \\
\leq 6 \mu \sum_{n \geq 0} \left(\int_0^t \varphi^n(t-s)ds \right) N^{1/2} \rho_N^n (2N^{-3/8}|n/2|+1) \\
\leq 12 \mu N^{1/8} \sum_{n \geq 0} \rho_N^n (2N^{-3/8})^{1/2} \int_0^t \varphi^n(t-s)ds.
\]
The conclusion follows from Lemma 43-(iii). □

We now study the empirical variance of J^N_t.

Lemma 46. Assume A. For all $\eta > 0$, there are $N_0 > 1$ and $C_\eta > 0$ such that for all $N \geq N_0$, all $t \geq 0$, on Ω^N_0, $E_\theta[||J^N_t - J^N_t \mathbf{1}_N||_2^2] \leq C_\eta [e^{(\alpha_0 + \eta)t} + N^{-1}||V_N - \bar{V}_N\mathbf{1}_N||_2^2 e^{2(\alpha_0 + \eta)t}]$.

Proof. As usual, we fix $\eta > 0$ and work with N large enough and on Ω^N_0, so that we can use Lemmas 35 and 43. Starting from (16) and using the Minkowski inequality, we find

$$E_\theta[||J^N_t - J^N_t \mathbf{1}_N||_2^2] \leq \sum_{n \geq 1} \int_0^t \varphi^n(t-s) E_\theta[||A^N_{x} M_s - A^N_{x} M_s \mathbf{1}_N||_2^2] ds.$$

But using Remark 10 and then Lemma 44-(i), we see that

$$E_\theta[||A^N_{x} M_s - A^N_{x} M_s \mathbf{1}_N||_2^2] = \sum_{i=1}^N \sum_{j=1}^N \sum_{k=1}^N (A^N_{x}(i,j)M^j_s - \frac{1}{N} \sum_{k=1}^N A^N_{x}(k,j)M^j_s)^2 e_\theta[Z^i_s N].$$

Using next that, for all $x, y \in \mathbb{R}^N$, $||x - \bar{x}\mathbf{1}_N||_2 - ||y - \bar{y}\mathbf{1}_N||_2 \leq ||x - y||_2$ (with the notation $\bar{x} = N^{-1} \sum_{i=1}^N x_i$ and $\bar{y} = N^{-1} \sum_{i=1}^N y_i$), we write

$$||A^N_{x} e_j - \bar{A}^N_{x} e_j \mathbf{1}_N||_2 \leq \frac{||A^N_{x} e_j||_2}{\sqrt{N}} \frac{||V_N||_2}{2} + \frac{||A^N_{x} e_j||_2}{\sqrt{N}} \frac{||V_N - \bar{V}_N\mathbf{1}_N||_2}{\sqrt{N}}.$$

by Lemma 35-(vi). Since $||A^N_{x} e_j||_2 \leq C \rho_N^2 / \sqrt{N}$ by Lemma 35-(vii) (because $n \geq 1$), we conclude that

$$E_\theta[||A^N_{x} M_s N - A^N_{x} M_s \mathbf{1}_N||_2^2] \leq C e^{(\alpha_0 + \eta)s/2} \rho_N^2 \left((2N^{-3/8})^{n/2} + \frac{||V_N - \bar{V}_N\mathbf{1}_N||_2}{\sqrt{N}} \right).$$

Consequently,

$$E_\theta[||J^N_t - J^N_t \mathbf{1}_N||_2^2] \leq C \sum_{n \geq 1} \rho_N^2 \left((2N^{-3/8})^{n/2} + \frac{||V_N - \bar{V}_N\mathbf{1}_N||_2}{\sqrt{N}} \right) \int_0^t \varphi^n(t-s)e^{(\alpha_0 + \eta)s/2} ds$$

$$\leq C e^{(\alpha_0 + \eta)t/2} \sum_{n \geq 1} \rho_N^2 (2N^{-3/8})^{n/2} \int_0^t \varphi^n(t-s) ds$$

$$+ C \frac{||V_N - \bar{V}_N\mathbf{1}_N||_2}{\sqrt{N}} \sum_{n \geq 1} \rho_N^2 \int_0^t \varphi^n(t-s)e^{(\alpha_0 + \eta)s/2} ds$$

$$\leq C e^{(\alpha_0 + \eta)t/2} + C \frac{||V_N - \bar{V}_N\mathbf{1}_N||_2}{\sqrt{N}} e^{(\alpha_0 + \eta)t}$$

by Lemma 43-(iii)-(iv). This completes the proof. □
The last lemma of the subsection concerns the martingale \mathbf{M}_t^N. In point (ii) below, (\cdot, \cdot) stands for the usual scalar product in \mathbb{R}^N.

Lemma 47. Assume A. For all $\eta > 0$, there are $N_\eta \geq 1$ and $C_\eta > 0$ such that for all $N \geq N_\eta$, all $t \geq 0$, on Ω_N^2,

(i) $E_\theta[||\mathbf{M}_t^N - \mathbf{M}_t^N\mathbf{1}_N||_2^2] \leq C_\eta N e^{(\alpha + \eta)t}$,

(ii) $E_\theta[||\mathbf{M}_t^N - \mathbf{M}_t^N\mathbf{1}_N, V_N - \bar{V}_N\mathbf{1}_N||_2^2] \leq C_\eta ||V_N - \bar{V}_N\mathbf{1}_N||_2^2 e^{(\alpha + \eta)t}$,

(iii) setting $X_t^N = ||\mathbf{M}_t^N - \mathbf{M}_t^N\mathbf{1}_N||_2^2 - N\bar{Z}_t^N$, we have $E_\theta[|X_t^N|] \leq C_\eta \sqrt{N} e^{(\alpha + \eta)t}$.

Proof. We fix $\eta > 0$ and work with N large enough and on Ω_N^2, so that we can use Lemmas 35 and 43.

To check point (iii), we write

$E_\theta[(\mathbf{M}_t^N - \mathbf{M}_t^N\mathbf{1}_N, V_N - \bar{V}_N\mathbf{1}_N)| \bar{M}_t^N, \bar{V}_N\mathbf{1}_N] = E_\theta[(\mathbf{M}_t^N, V_N - \bar{V}_N\mathbf{1}_N)| \bar{M}_t^N, \bar{V}_N\mathbf{1}_N, \bar{M}_t^N, \bar{V}_N\mathbf{1}_N]$. By Remark 10, this equals $\sum_{i=1}^N (V_N(i) - \bar{V}_N)^2 E_\theta[Z_i^N|\bar{M}_t^N]$, which is controled by $C_\eta ||V_N - \bar{V}_N\mathbf{1}_N||_2^2 e^{(\alpha + \eta)t}$ by Lemma 44-(i).

For point (ii), we observe that $X_t^N = Y_t^N - N(\bar{Z}_t^N)^2$, where $Y_t^N = ||\mathbf{M}_t^N||_2^2 - N\bar{Z}_t^N$. Using as usual Remark 10, we deduce that $E_\theta[N(\mathbf{M}_t^N)^2] = N^2 \sum_{i=1}^N E_\theta[Z_i^N] \leq C_\eta e^{(\alpha + \eta)t}$ by Lemma 44-(i). Next, we see that $E_\theta[(\mathbf{M}_t^N)^2] = \sum_{i=1}^N (\mathbf{M}_t^N)^2 = 2 \sum_{i=1}^N \int_0^t M_t^N dM_t^N + \sum_{i=1}^N Z_i^N$, since for each i, $[M_t^N, M_t^N]_t = Z_i^N$, see Remark 10. Thus $Y_t^N = 2 \sum_{i=1}^N \int_0^t M_t^N dM_t^N$. The martingales $\int_0^t M_t^N dM_t^N$ are orthogonal and $[\int_0^t M_t^N dM_t^N, \int_0^t M_t^N dM_t^N]_t = \int_0^t (M_t^N)^2 dZ_t^N \leq Z_t^N$.

As a conclusion,

$E_\theta[|Y_t^N|^2] = 2 \sum_{i=1}^N E_\theta[(M_t^N)^2]^{1/2} E\sup_{[0,t]}(M_t^N)^2$.

Using again that $E_\theta[N(\mathbf{M}_t^N)^2] \leq C_\eta e^{(\alpha + \eta)t}$, we see that $E_\theta[|Y_t^N|^2] \leq C \sum_{i=1}^N E_\theta[(Z_i^N)^2] \leq C_\eta N e^{(\alpha + \eta)t}$ by Lemma 44-(i). Hence $E_\theta[|Y_t^N|]^2 \leq C_\eta N e^{(\alpha + \eta)t}$ and $||X_t^N|| \leq E_\theta[|Y_t^N|] + E_\theta[|Z_t^N|] \leq E_\theta[|Y_t^N|] + C_\eta N e^{(\alpha + \eta)t}$.

Finally, (i) follows from (iii), since $E_\theta[||\mathbf{M}_t^N - \mathbf{M}_t^N\mathbf{1}_N||_2^2] \leq E_\theta[|X_t^N|] + N E_\theta[|Z_t^N|]$.

5.4. Conclusion. We now conclude the proof of Theorem 6. We recall that

$U_t^N = \left[\frac{\sum_{i=1}^N (Z_t^N - \bar{Z}_t^N)^2}{Z_t^N} \right] \mathbf{1}_{(Z_t^N > 0)}$,

that V_N was introduced in Lemma 34 and that

$U_\infty^N = \frac{\sum_{i=1}^N (V_N(i) - \bar{V}_N)^2}{V_N} \mathbf{1}_{(V_N > 0)}$.

We first proceed to a suitable decomposition of the error.

Remark 48. Assume that $p \in (0, 1]$. We introduce $D_t^N = ||U_t^N - (1/p - 1)||$ and recall that v_t^N was defined in (14). There is N_0 (depending only on p) such that for all $N \geq N_0$, on the event $\Omega_N^2 \cap \{Z_t^N \geq v_t^N/4 > 0\}$,

$D_t^N \leq 16 D_t^{N,1} + 128 ||V_N - \bar{V}_N||_2^2 D_t^{N,2} + |U_\infty^N - (1/p - 1)|$.
where
\[D_t^{N,1} = \frac{1}{(v_t^N)^2} \left| \left| Z_t^N - Z_t^N 1_N \right| |^2 - N \bar{Z}_t^N - (v_t^N)^2 \right| V_N - \bar{V}_N 1_N \right| |^2 \] and \[D_t^{N,2} = \frac{\bar{Z}_t^N - \bar{V}_N}{v_t^N}. \]

Proof. We work with \(N \) sufficiently large so that we can apply Lemma 35. We obviously have \(D_t^N \leq |U_t^N - U_{t+1} | + |U_{t+1}^N | - (1/p - 1) \). We next write, on the event \(\Omega_2^N \cap \{ Z_t^N \geq v_t^N /4 > 0 \}, \)

\[|U_t^N - U_{t+1} | \leq \frac{1}{(Z_t^N)^2} \left| \left| Z_t^N - Z_t^N 1_N \right| |^2 - N \bar{Z}_t^N - (v_t^N)^2 \right| V_N - \bar{V}_N 1_N \right| |^2 \]

\[+ \left| \left| V_N - \bar{V}_N 1_N \right| |^2 \right| \left(\frac{v_t^N}{Z_t^N} \right)^2 - \frac{1}{(V_t^N)^2} \]

\[\leq 16D_t^{N,1} + 128 \left| \left| V_N - \bar{V}_N 1_N \right| |^2 \right| D_t^{N,2}. \]

We used that on the present event, \((\bar{Z}_t^N)^{-2} \leq 16(v_t^N)^{-2} \), that \(\bar{V}_N \geq 1/2 \) (see Lemma 35-(ii)), that \((\bar{Z}_t^N/v_t^N) \geq 1/4 \) and that, for all \(x, y \geq 1/4, |x^2 - y^2| \leq 128|x - y| \).

We now treat the term \(D_t^{N,2} \).

Lemma 49. Assume A. For all \(\eta > 0 \), there are \(N_\eta \geq 1, t_\eta \geq 0 \) and \(C_\eta > 0 \) such that, for all \(N \geq N_\eta \), all \(t \geq t_\eta \), on \(\Omega_2^N \),

(i) \(E_\theta[D_t^{N,2}] \leq C_\eta e^{2\eta t}(N^{-1/2} + e^{-\alpha ot}) \),

(ii) \(\text{Pr}_\theta(\bar{Z}_t^N \leq v_t^N/4) \leq C_\eta e^{2\eta t}(N^{-1/2} + e^{-\alpha ot}) \).

Proof. As usual, we fix \(\eta > 0 \) and consider \(N \geq N_\eta \) and \(t \geq t_\eta \) and we work on \(\Omega_2^N \) so that we can apply Lemmas 35 and 43.

Recalling (12)-(13), we write \(Z_t^N = E_\theta[Z_t^N] + U_t^N = v_t^N V_N + I_t^N + U_t^N \), whence \(D_t^{N,2} \leq (v_t^N)^{-1} \left(|I_t^N| + |U_t^N| \right) \). We infer from Lemma 45 that \(|I_t^N| \leq N^{-1/2} \left| \left| I_t^N \right| | \right| \leq C_\eta N^{1/2 - 1/2} \), which is obviously bounded by \(C_\eta e^{\eta t} \). Next, we know from Lemma 44-(iii) that \(E_\theta[|U_t^N|] \leq C_\eta N^{-1/2} e^{(\alpha ot + \eta t)} \). We deduce that \(E_\theta[D_t^{N,2}] \leq C_\eta (v_t^N)^{-1} e^{\eta t} [1 + N^{-1/2} e^{\alpha ot}] \). But since \(t \geq t_\eta \), we know from Lemma 43-(ii) that \(v_t^N \geq C_\eta e^{(\alpha ot + \eta t)} \). This completes the proof of (i).

By Lemma 35-(ii), \(\bar{V}_N \geq 1/2 \). Thus \(\bar{Z}_t^N \leq v_t^N/4 \) implies that \(D_t^{N,2} \geq |\bar{Z}_t^N/v_t^N - \bar{V}_N| \geq 1/4 \). Hence \(\text{Pr}_\theta(\bar{Z}_t^N \leq v_t^N/4) \leq 4E_\theta[D_t^{N,2}] \) and (ii) follows from (i).

Lemma 50. Assume A. For all \(\eta > 0 \), there are \(N_\eta \geq 1, t_\eta \geq 0 \) and \(C_\eta > 0 \) such that, for all \(N \geq N_\eta \), all \(t \geq t_\eta \), on \(\Omega_2^N \),

\[E_\theta[D_t^{N,1}] \leq C_\eta (1 + \left| \left| V_N - \bar{V}_N 1_N \right| |^2 \right| e^{4\eta t} \left(\frac{1}{\sqrt{N}} + \frac{\sqrt{N}}{e^{\alpha ot}} + \left(\frac{\sqrt{N}}{e^{\alpha ot}} \right)^{3/2} \right). \]

Proof. We fix \(\eta > 0 \) and consider \(N \geq N_\eta \) and \(t \geq t_\eta \) and we work on \(\Omega_2^N \) so that we can apply Lemmas 35 and 43. Recalling (12)-(13), we write \(Z_t^N = v_t^N V_N + I_t^N + M_t^N + J_t^N \) and

\[D_t^{N,1} = \frac{1}{(v_t^N)^2} \left| \left| I_t^N - I_t^N 1_N + J_t^N - J_t^N 1_N \right| |^2 + \left| \left| M_t^N - M_t^N 1_N \right| |^2 - N \bar{Z}_t^N \right| \]

\[+ 2 \left(I_t^N - I_t^N 1_N + J_t^N - J_t^N 1_N, v_t^N (V_N - \bar{V}_N 1_N) + M_t^N - M_t^N 1_N \right) \]

\[+ 2v_t^N (V_N - \bar{V}_N 1_N, M_t^N - M_t^N 1_N) \].
Recalling that \(X_t^N = ||M_t^N - \hat{M}_t^N 1_N||^2 - N \hat{Z}_t^N \), see Lemma 47, we deduce that

\[
D_t^{N,1} \leq \frac{1}{(4N)^2} \left[2||I_t^N - \hat{I}_t^N 1_N||^2 + 2||J_t^N - \hat{J}_t^N 1_N||^2 + ||X_t^N|| \right.
\]

\[
+ 2(||I_t^N - \hat{I}_t^N 1_N||^2 + ||J_t^N - \hat{J}_t^N 1_N||^2) (v_t^N ||V_N - \hat{V}_N 1_N||_2 + ||M_t^N - \hat{M}_t^N 1_N||_2)
\]

\[
+ 2v_t^N (||V_N - \hat{V}_N 1_N, M_t^N - \hat{M}_t^N 1_N) ||.
\]

We now have all the weapons to give the proof of Theorem 6. Assume \(A \) and fix \(\eta > 0 \).

Step 1. Starting from Remark 48 and using Lemmas 49 and 50, we deduce that there is \(N_\eta \geq 1 \), \(t_\eta \geq 0 \) and \(C_\eta > 0 \) such that for all \(N \geq N_\eta \), all \(t \geq t_\eta \),

\[
1_{\Omega_N^c} E\left[\left| U_t^N - \left(\frac{1}{p} - 1 \right) \right| \right] \leq 1_{\Omega_N} \left| U_t^N - \left(\frac{1}{p} - 1 \right) \right|
\]

\[
+ C_\eta 1_{\Omega_N} (1 + ||V_N - \hat{V}_N 1_N||_2^2) e^{4qt} \left(\frac{1}{\sqrt{N}} \frac{\sqrt{N}}{e^{\alpha t}} + \frac{\sqrt{N}}{e^{\alpha t}} \right)^{3/2},
\]

which implies, by Proposition 40, that

\[
E \left[1_{\Omega_N^c} \cap [Z_t^N \geq e^N/4 > 0] \left| U_t^N - \left(\frac{1}{p} - 1 \right) \right| \right] \leq C_\eta e^{4qt} \left(\frac{1}{\sqrt{N}} \frac{\sqrt{N}}{e^{\alpha t}} + \frac{\sqrt{N}}{e^{\alpha t}} \right)^{3/2}
\]

and thus, for all \(\varepsilon \in (0, 1) \),

\[
Pr \left(\Omega_N^c, Z_t^N \geq e^N/4 > 0, \left| U_t^N - \left(\frac{1}{p} - 1 \right) \right| \geq \varepsilon \right) \leq C_\eta \varepsilon e^{4qt} \left(\frac{1}{\sqrt{N}} \frac{\sqrt{N}}{e^{\alpha t}} + \frac{\sqrt{N}}{e^{\alpha t}} \right)^{3/2}
\]

\[\leq C_\eta \varepsilon e^{4qt} \left(\frac{1}{\sqrt{N}} \frac{\sqrt{N}}{e^{\alpha t}} + \frac{\sqrt{N}}{e^{\alpha t}} \right).
\]

For the last inequality, we used that either \(N^{1/2} e^{-\alpha t} \geq 1 \) and then the inequality is trivial or \(N^{1/2} e^{-\alpha t} \leq 1 \) and then \((N^{1/2} e^{-\alpha t})^{3/2} \leq N^{1/2} e^{-\alpha t} \). But we know from Lemma (43)-(ii) that
\(v_t^N > 0 \) on \(\Omega_N^2 \) (because \(t \geq t_n \)) and from Lemmas 33 and 49-(ii) that
\[
\Pr((\Omega_N^2)^c \text{ or } Z_t^N < v_t^N/4) \leq Ce^{-cN^{1/4}} + C_\eta e^{2\eta t} \left(\frac{1}{\sqrt{N}} + e^{-\alpha_0 t} \right) \leq C_\eta e^{2\eta t} \left(\frac{1}{\sqrt{N}} + \frac{\sqrt{N}}{e^{\alpha_0 t}} \right),
\]
whence finally,
\[
\Pr \left(\left| U_t^N - \left(\frac{1}{p} - 1 \right) \right| \geq \varepsilon \right) \leq \frac{C_\eta}{\varepsilon} e^{4\eta t} \left(\frac{1}{\sqrt{N}} + \frac{\sqrt{N}}{e^{\alpha_0 t}} \right).
\]

We have proved this inequality only for \(N \geq N_\eta \) and \(t \geq t_n \), but it obviously extends, enlarging \(C_\eta \) is necessary, to any values of \(N \geq 1 \) and \(t \geq 0 \).

Step 2. We next recall that \(P_t^N = \Phi(U_t^N) \), where \(\Phi(u) = (1 + u)^{-1}1_{\{u \geq 0\}} \) and observe that \(p = \Phi(1/p) \). The function \(\Phi \) is Lipschitz continuous on \([0, \infty) \) with Lipschitz constant 1. Thus for any \(\varepsilon \in (0, 1) \), \(|P_t^N - p| > \varepsilon \) implies that either \(|U_t^N - (1/p - 1)| > \varepsilon \) or \(|U_t^N| < 0 \), so that in any case, \(|U_t^N - (1/p - 1)| > \min \{ \varepsilon, (1/p - 1) \} \). We thus conclude from Step 1 that for any \(N \geq 1 \), any \(t \geq 0 \), any \(\varepsilon \in (0, 1) \),
\[
\Pr(\{ P_t^N - p \geq \varepsilon \}) \leq \frac{C_\eta}{\min \{ \varepsilon, (1/p - 1) \}} e^{4\eta t} \left(\frac{1}{\sqrt{N}} + \frac{\sqrt{N}}{e^{\alpha_0 t}} \right) \leq \frac{C_\eta}{\varepsilon} e^{4\eta t} \left(\frac{1}{\sqrt{N}} + \frac{\sqrt{N}}{e^{\alpha_0 t}} \right).
\]
The proof is complete. \(\square \)

Finally, we handle the

Proof of Remark 5. We assume \(A \) and fix \(\eta > 0 \). We know from Lemma 49-(i) that for all \(N \geq N_\eta \), \(t \geq t_n \), \(1_{\Omega_N^2} E_\theta \| (\tilde{Z}_t^N / v_t^N) - \bar{V}_N \| \leq C_\eta e^{2\eta t} (N^{-1/2} + e^{-\alpha_0 t}) \), from Lemma 35-(ii) that \(\bar{V}_N \in [1/2, 2] \) (on \(\Omega_N^2 \)) and from Lemma 33 that \(\Pr(\Omega_N^2)^c \geq 1 - Ce^{-cN^{1/4}} \). We also know from Lemma 43-(i)-(ii) that on \(\Omega_N^2 \), there are \(0 < a_\eta < b_\eta \) such that \(v_t^N \in [a_\eta e^{(\alpha_0 - \eta)t}, b_\eta e^{(\alpha_0 + \eta)t}] \). We easily deduce that, still for \(N \geq N_\eta \) and \(t \geq t_n \),
\[
\Pr(\tilde{Z}_t^N \notin [(a_\eta/2)e^{(\alpha_0 - \eta)t}, 2b_\eta e^{(\alpha_0 + \eta)t})] \leq Ce^{-cN^{1/4}} + C_\eta e^{2\eta t} (N^{-1/2} + e^{-\alpha_0 t}).
\]
We conclude that for any \(\eta \in (0, \alpha_0/2) \), \(\lim_{t \to 0} \lim_{N \to \infty} \Pr(\tilde{Z}_t^N \in [(a_\eta/2)e^{(\alpha_0 - \eta)t}, 2b_\eta e^{(\alpha_0 + \eta)t})] = 1 \). This of course implies that for any \(\eta > 0 \), \(\lim_{t \to 0} \lim_{N \to \infty} \Pr(\tilde{Z}_t^N \in [e^{(\alpha_0 - \eta)t}, e^{(\alpha_0 + \eta)t})] = 1 \). \(\square \)

6. Detecting subcriticality and supercriticality

Proof of Proposition 7. We first assume \(H(1) \). We then know from Lemma 16-(i) with \(r = 1 \) that, on \(\Omega_N^1 \), \(E_\theta |Z_t^N| \leq C t < e^{(\log t)^2}/2 \) for all \(t \) large enough, say for all \(t \geq t_0 \). We also know from Lemma 18 that, still on \(\Omega_N^1 \), \(E_\theta |Z_t^N - E_\theta |Z_t^N|| = E_\theta ||U_t^N|| \leq C(t/N)^{1/2} \) and from Lemma 13 that \(\Pr(\Omega_N^1)^c \leq Ce^{-cN} \). We easily deduce that
\[
\Pr(\log Z_t^N \geq (\log t)^2) \leq \Pr((\Omega_N^1)^c) + \Pr(\Omega_N^1, E_\theta |Z_t^N| \geq e^{(\log t)^2}/2) \leq Ce^{-cN} + C(t/N)^{1/2} e^{-(\log t)^2} \]
for all \(t \geq t_0 \). Enlarging \(C \) if necessary, we conclude that for all \(t \geq 1 \), \(\Pr(\log Z_t^N) \geq (\log t)^2) \leq Ce^{-cN} + Ct^{1/2} e^{-(\log t)^2} \).

We next assume \(A \) and we fix \(\eta \in (0, \alpha_0) \). We know from Lemma 49-(ii) that for all \(N \geq N_\eta \) and \(t \geq t_n \), on \(\Omega_N^2 \), \(\Pr(\tilde{Z}_t^N \leq v_t^N/4) \leq C_\eta e^{2\eta t} (N^{-1/2} + e^{-\alpha_0 t}) \), from Lemma 43-(i)-(ii) that, still
on Ω_N^2, $v_t^N \geq C_0 e^{(\alpha_0 - \eta)t} \geq 4e^{(\log t)^2}$ (enlarging the value of t_η if necessary). Finally, Lemma 33 tells us that $\Pr((\Omega_N^2)^c) \leq C e^{-cN^{1/4}}$. We thus see that
\[
\Pr(\log(\tilde{Z}_t^N) \leq (\log t)^2) \leq \Pr((\Omega_N^2)^c) + \Pr(\Omega_N^2, \tilde{Z}_t^N \leq v_t^N/4) \\
\leq Ce^{-cN^{1/4}} + C_\eta e^{2nt}(N^{-1/2} + e^{-\alpha_0 t}) \\
\leq C_\eta e^{2nt}(N^{-1/2} + e^{-\alpha_0 t}).
\]
All this shows that for all $\eta \in (0, \alpha_0)$, we can find C_η and η such that for all $t \geq t_\eta$ and all $N \geq N_\eta$, $\Pr(\log(\tilde{Z}_t^N) \leq (\log t)^2) \leq C_\eta e^{2nt}(N^{-1/2} + e^{-\alpha_0 t})$. We easily conclude that for all $\eta > 0$, there is C_η such that for all $N \geq 1$ and all $t \geq 1$, $\Pr(\log(\tilde{Z}_t^N) \leq (\log t)^2) \leq C_\eta e^{2nt}(N^{-1/2} + e^{-\alpha_0 t})$ as desired.

7. Numerics

We say that we are in the independent case when the family $(\theta_{ij})_{1 \leq i,j \leq N}$ is i.i.d. and Bernoulli(p)-distributed, as in the whole paper. We say we are in the symmetric case when the family $(\theta_{ij})_{1 \leq i,j \leq N}$ is i.i.d. and Bernoulli(p)-distributed and when $\theta_{ji} = \theta_{ij}$ for all $1 \leq i < j \leq N$. We will see that this does not change much the numerical results (with the very same estimators).

Also, we assume that we observe only $(\tilde{Z}_{ij}^N)_{i,j \in [0,T], i \neq j}$ for some (large) K smaller than N. The theoretical results of this paper only apply when $K = N$. We adapt the estimators as follows.

We introduce $\tilde{Z}_{i}^{N,K} = K^{-1} \sum_{k=1}^{K} \tilde{Z}_{i,k}^{N,K}$ and
\[
\mathcal{E}_{i,t}^{N,K} = \frac{\tilde{Z}_{2i}^{N,K} - \tilde{Z}_{i}^{N,K}}{t}, \quad \mathcal{V}_{i,t}^{N,K} = \frac{N}{K} \sum_{i=1}^{K} \left(\frac{\tilde{Z}_{2i}^{N,K} - \tilde{Z}_{i}^{N,K}}{t} - \mathcal{E}_{i,t}^{N,K} \right)^2 - \frac{N}{t} w_{i,t}^{N,K},
\]
\[
\mathcal{W}_{\Delta,t}^{N,K} = 2Z_{2\Delta,t}^{N,K} - Z_{\Delta,t}^{N,K}, \quad \text{where } Z_{\Delta,t}^{N,K} = \frac{N}{t} \sum_{k=1}^{K} \left(\frac{\tilde{Z}_{k}^{N,K} - \tilde{Z}_{(k-1)\Delta}^{N,K} - \Delta \mathcal{E}_{i,t}^{N,K}}{t} \right)^2,
\]

as well as
\[
\mathcal{P}_{\Delta,t}^{N,K} = \Phi_{4} \left(\mathcal{E}_{T/2}^{N,K}, \mathcal{V}_{T/2}^{N,K}, \mathcal{W}_{T/2}^{N,K}, \frac{N - K}{K} \mathcal{E}_{T/2}^{N,K} \right),
\]
with Φ defined in Corollary 4. We added the absolute value around the last argument of Φ_4 for practical reasons: by this way, $\mathcal{P}_{\Delta,t}^{N,K}$ is always well-defined (and seems closer to the reality than Ψ_3 which is 0 when $w \leq 0$). This does not change the theory (since $\mathcal{W}_{\Delta,t}^{N,K} - \frac{N-K}{K} \mathcal{E}_{T/2}^{N,K}$ is asymptotically positive, at least when $N = K$). We also put
\[
\mathcal{U}_{T}^{N,K} = \left[\frac{N}{K} \sum_{i=1}^{K} \left(\frac{\tilde{Z}_{i,t}^{N,K} - \tilde{Z}_{i}^{N,K}}{t} \right)^2 - \frac{N}{2 \tilde{Z}_{i,t}^{N,K}} \right] \mathbb{1}_{\{\tilde{Z}_{i,t}^{N,K} > 0\}} \quad \text{and} \quad \mathcal{P}_{\Delta,t}^{N,K} = \frac{1}{\mathcal{U}_{T}^{N,K}} + 1_{\{\mathcal{U}_{T}^{N,K} > 0\}}.
\]

We set $\Delta = t/(2[\ell^{9/13}])$, which corresponds to the (arbitrarily) choice $q = 12$, and
\[
\hat{\theta}_{T}^{N,K} = \mathcal{P}_{\Delta,T}^{N,K} \mathbb{1}_{\{\log(\tilde{Z}_{i,t}^{N,K}) < (\log T)^2\}} + \mathcal{P}_{\Delta,T}^{N,K} \mathbb{1}_{\{\log(\tilde{Z}_{i,t}^{N,K}) > (\log T)^2\}}.
\]

7.1. Choice of the estimators. Let us explain briefly how we have modified the estimators when observing only $(\tilde{Z}_{ij}^N)_{i,j \in [0,T], i \neq j}$. We adopt the notation of Section 2, in particular $A_N(i,j) = N^{-1} \theta_{ij}$, and we follow the considerations therein.

In the subcritical case, we recall that $Q_N = (I - \Lambda A_N)^{-1}$ and that $\ell_{N}(i) = \sum_{j=1}^{N} Q_N(i,j)$. Following closely the argumentation of Subsection 2.1, we expect that, for t and Δ large and in a suitable regime, we should have $\mathcal{E}_{i,t}^{N,K} \simeq \mu_{i}^{N,K}$ (where $\mu_{i}^{N,K} = K^{-1} \sum_{i=1}^{K} \ell_N(i)$).
\[\mu^2(N/K) \sum_{i=1}^{K} (\ell_N(i) - \bar{\ell}_N)^2, \]
and \(W_{\Delta, t}^{N,K} \simeq \mu(N/K^2) \sum_{j=1}^{N} (\sum_{i=1}^{K} Q_N(i,j))^2 \ell_N(j) \). Recalling now that \(\ell_N(i) \simeq 1 + \Delta(1 - Ap)^{-1} L_N(i) \) and that \(NL_N \) is a vector composed of i.i.d. Binomial\((N, p) \) random variables, we expect that \(\mathcal{E}_t^{N,K} \simeq \mu \mathbb{E}[(\ell_N(1))^2] \simeq \mu/(1 - Ap) \) and \(\mathcal{V}_t^{N,K} \simeq \mu^2 \text{var}(\ell_N(1)) \simeq \mu^2 \Delta^2 p(1 - p)/(1 - Ap)^2 \) for \(N, K \) and \(t \) large. For the last estimator, one first has to get convinced, following again the arguments of Subsection 2.1, that \(\sum_{i=1}^{K} Q_N(i,j) \simeq 1 + (K/N) \Lambda p/(1 - Ap) \) if \(j \in \{1, \ldots, K\} \) while \(\sum_{i=1}^{K} Q_N(i,j) \simeq (K/N)(Ap/(1 - Ap)) \) if \(j \in \{K + 1, \ldots, N\} \). Since we still have \(\ell_N(j) \simeq 1 + Ap/(1 - Ap) = 1/(1 - Ap) \), we find that

\[
W_{\Delta, t}^{N,K} \simeq \frac{\mu N}{K^2(1 - Ap)} \left(K \left[1 + \frac{KAp}{N(1 - Ap)} \right]^2 + (N - K) \left[\frac{KAp}{N(1 - Ap)} \right]^2 \right) = \frac{\mu}{(1 - Ap)^3} + \frac{(N - K)\mu}{K(1 - Ap)}.
\]

Recalling that \(\mathcal{E}_t^{N,K} \simeq \mu/(1 - Ap) \), we conclude that \(W_{\Delta, t}^{N,K} - (N - K)\mathcal{E}_t^{N,K} / K \simeq \mu/(1 - Ap)^3 \).

For \(N, K, t \) and \(\Delta \) large, we thus should have

\[
\Phi_3\left(\mathcal{E}_t^{N,K}, \mathcal{V}_t^{N,K}, \left| W_{\Delta, t}^{N,K} - \frac{N - K}{K} \mathcal{E}_t^{N,K} \right| \right) \simeq \Phi_3\left(\frac{\mu \Delta^2 p(1 - p)}{(1 - Ap)^2}, \frac{\mu}{(1 - Ap)^3} \right) = p.
\]

We introduce the conjectured limit of \(\mathcal{P}_{\Delta, t}^{\text{sub},N,K} \) as \(t \to \infty \):

\[
\mathcal{P}_{\infty, \Delta, t}^{\text{sub},N,K} = \Phi_3\left(\frac{\mu \bar{\ell}_N}{K}, \frac{\mu^2 N}{K} \sum_{i=1}^{K} (\ell_N(i) - \bar{\ell}_N)^2, \frac{\mu N}{K} \sum_{j=1}^{N} (\sum_{i=1}^{K} Q_N(i,j))^2 \ell_N(j) - \frac{N - K}{K} \mu \bar{\ell}_N \right).
\]

In the supercritical case, we follow Subsection 2.2 and deduce that for \(t \) large, we should have \(\bar{U}_t^{N,K} \simeq (N/K)(\bar{V}_N)^{-2} \sum_{i=1}^{K} (V_N(i) - \bar{V}_N)^2 \), where \(V_N \) is the Perron-Frobenius eigenvector of \(A_N \) and where \(\bar{V}_N = K^{-1} \sum_{i=1}^{K} V_N(i) \). Recalling now that \(V_N \) is almost colinear to \(L_N \) and that \(NL_N \) is a vector composed of i.i.d. Binomial\((N, p) \) random variables, we conclude that indeed, it should hold that \(\bar{U}_t^{N,K} \simeq N(\mathbb{E}[V_N(1)])^{-2}\text{var}(V_N(1)) \simeq 1/p - 1 \) for \(N, K \) and \(t \) large, whence \(\mathcal{P}_{t}^{\text{sup},N,K} \simeq p \). Here we introduce the conjectured limit of \(\mathcal{P}_{t}^{\text{sup},N,K} \) as \(t \to \infty \):

\[
\mathcal{P}_{\infty}^{\text{sup},N,K} = \left(1 + \frac{N}{K(\bar{V}_N)^2} \sum_{i=1}^{K} (V_N(i) - \bar{V}_N)^2 \right)^{-1}.
\]

7.2. **Numerical results.** From now on, we assume that \(\varphi(t) = a \exp(-bt) \) for some \(a, b > 0 \), which satisfies all our assumptions and is easy to simulate. We also always assume that \(a = 2 \) and \(b = 1 \), whence \(\lambda = 2 \). We did not find interesting different behaviors when using other values.

On all the pictures below, we plot the time evolution of the three quartiles, using 1000 simulations, of \(\hat{p}_t^{N,K} - p \), as a function of time \(t \in [0, T] \). We always choose \(T \) in such a way that \(\bar{Z}_T^N \simeq 3000 \), so that on the right of all the pictures below, we always have more or less the same quantity of data (for a given value of \(K \)). The curves are not smooth because we use only 1000 simulations, but this already takes a lot of time.

For a given simulation, we say that the choice is good when \(\hat{p}_t^{N,K} = \mathcal{P}_{\Delta, t}^{\text{sub},N,K} \) and \(Ap < 1 \) or \(\hat{p}_t^{N,K} = \mathcal{P}_{t}^{\text{sup},N,K} \) and \(Ap > 1 \). When the choice is almost always good (that is, for a large proportion of the simulations), we also indicate below the picture the three quartiles of \(\hat{p}_t^{N,K} - p \), where \(\hat{p}_\infty^{N,K} \) is the conjectured limit as \(t \to \infty \) of \(\hat{p}_t^{N,K} \), given by \(\hat{p}_\infty^{N,K} = \mathcal{P}_{\infty, \Delta, t}^{\text{sub},N,K} \) when \(Ap < 1 \) and \(\hat{p}_\infty^{N,K} = \mathcal{P}_{\infty}^{\text{sup},N,K} \) when \(Ap > 1 \).

We start with the independent case. As the pictures below show, the estimation of \(p \) is more precise in the fairly supercritical case. Also, around the critical case, \(\hat{p}_t^{N,K} \) is far from always
making the good choice, but this does not, however, produce too bad results. On the contrary, the estimation of p when p is very small does not work very well.

Observe that the results with $N = K = 1000$ are most often not better than those with $N = K = 250$. This is not so surprising for a given value of T, since our rate of convergence resembles $T^{-1} N^{1/2} + N^{-1/2}$ in the subcritical case and something similar in the supercritical case.

Finally, in all the trials below, it seems that $|\hat{p}_{N,K}' - p|$ is much smaller than $|\hat{p}_{t,N,K}' - p|$.

<table>
<thead>
<tr>
<th>Independent case, $p = 0.85$, $\mu = 1$ (fairly supercritical). The choice is always good for $t \in [1, 9.7]$.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
| $N = 250$
$K = 250$ |
| $-0.0073, 0.00097, 0.0091$ |
| ![Diagram](image2.png) |
| $N = 1000$
$K = 250$ |
| $-0.0067, 0.0011, 0.0080$ |
| ![Diagram](image3.png) |
| $N = 1000$
$K = 1000$ |
| $-0.0038, 0.000086, 0.0041$ |
| These pictures illustrate that this situation (fairly supercritical) is quite favorable. |

<table>
<thead>
<tr>
<th>Independent case, $p = 0.65$, $\mu = 1$ (supercritical). The choice is always bad for $t \in [14, 19]$.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
| $N = 250$
$K = 250$ |
| ![Diagram](image5.png) |
| $N = 1000$
$K = 250$ |
| ![Diagram](image6.png) |
| $N = 1000$
$K = 1000$ |
| However, the error (using the wrong estimator) does not seem so large. The jumps correspond to jumps of $t \mapsto \Delta t$. This is particularly visible on these pictures because the time interval is short. Let us mention that the choice becomes good around $t = 22$. |
Independent case, $p = 0.51$, $\mu = 1$ (slightly supercritical). The choice is always bad for $t \in [9, 62]$.

However, the error (using the wrong estimator) does not seem so large.

Independent case, $p = 0.48$, $\mu = 20$ (slightly subcritical). The choice is always bad for $t \in [1, 15]$ and always good for $t \in [17, 20]$.

We clearly see the change of choice around $t = 16$.

Independent case, $p = 0.35$, $\mu = 1$ (fairly subcritical). The choice is always good for $t \in (0, 900]$.

These results show that the bias is rather large, of the same order as the standard deviation.
Independent case, \(p = 0.1, \mu = 1 \) (fairly subcritical). The choice is always good.

These pictures illustrate that this situation (\(p \) small) is not quite favorable.

Independent case, \(p = 0, \mu = 1 \) (subcritical). The choice is always good.

This is catastrophic.

In the symmetric case, we obtain very similar numerical results.

Symmetric case, \(p = 0.85, \mu = 1 \) (fairly supercritical). The choice is always good for \(t \in [1,9.7] \).
Symmetric case, $p = 0.65$, $\mu = 1$ (supercritical). The choice is always bad for $t \in [14, 19]$.

Symmetric case, $p = 0.51$, $\mu = 1$ (slightly supercritical). The choice is always bad for $t \in [9, 62]$.

Symmetric case, $p = 0.48$, $\mu = 20$ (slightly subcritical but large μ). The choice is always bad for $t \in [1, 15]$ and always good for $t \in [17, 20]$.
Symmetric case, $p = 0.35$, $\mu = 1$ (fairly subcritical). The choice is always good for $t \in (0, 900]$.

\[0.010, 0.0021, 0.0165 \]

\[0.012, 0.0021, 0.018 \]

\[-0.007, 0.0011, 0.0075 \]

Symmetric case, $p = 0.1$, $\mu = 1$ (fairly subcritical). The choice is always good.

\[-0.0030, 0.0029, 0.0087 \]

\[-0.0043, 0.00091, 0.0029 \]

\[-0.0022, 0.00056, 0.0029 \]

Finally, we discuss the practical choice of Δ.

Independent case, $\mu = 1$, $p = 0.35$ (fairly subcritical), with $T = 900$ and $N = K = 1000$. On the left, we have plotted $P^\text{sub,N,K}_{\Delta,T} - p$ as a function of $\Delta \in [1, 15]$ obtained with one simulation. On the right, we have plotted the quartiles of the same quantity using 1000 simulations.

\[0.010, 0.0021, 0.0165 \]

\[0.012, 0.0021, 0.018 \]

\[-0.007, 0.0011, 0.0075 \]

Our (arbitrary) choice $\Delta_T = T/(2|T^{9/13}|) \approx 4.1$ seems rather suitable: we see on the right picture that the “optimal” Δ lies between 4 and 6. This is mainly due to chance and probably depends strongly on the parameters of the model. We see on the left picture that given one set of data, $P^\text{sub,N,K}_{\Delta,T}$ varies a lot.
References

Sylvain Delattre, Laboratoire de Probabilités et Modèles Aléatoires, UMR 7599, Université Paris Diderot, Case courrier 7012, avenue de France, 75205 Paris Cedex 13, France.
E-mail address: sylvain.delattre@univ-paris-diderot.fr

Nicolas Fournier, Laboratoire de Probabilités et Modèles Aléatoires, UMR 7599, Université Pierre-et-Marie Curie, Case 188, 4 place Jussieu, F-75252 Paris Cedex 5, France.
E-mail address: nicolas.fournier@upmc.fr