A Bernstein-von Mises theorem for smooth functionals in semiparametric models

Ismaël Castillo and Judith Rousseau

Abstract

A Bernstein-von Mises theorem is derived for general semiparametric functionals. The result is applied to a variety of semiparametric problems, in i.i.d. and non-i.i.d. situations. In particular, new tools are developed to handle semiparametric bias, in particular for nonlinear functionals and in cases where regularity is possibly low. Examples include the squared L^2-norm in Gaussian white noise, nonlinear functionals in density estimation, as well as functionals in autoregressive models. For density estimation, a systematic study of BvM results for two important classes of priors is provided, namely random histograms and Gaussian process priors.

1 Introduction

Bayesian approaches are often considered to be close asymptotically to frequentist likelihood-based approaches so that the impact of the prior disappears as the information brought by the data – typically the number of observations – increases. This common knowledge is verified in most parametric models, with a precise expression of it through the so-called Bernstein–von Mises Theorem or property (hereafter BvM). This property says that, as the number of observations increases the posterior distribution can be approached by a Gaussian distribution centered at an efficient estimator of the parameter of interest and with variance the inverse of the Fisher information matrix of the whole sample, see for instance van der Vaart [42], Berger [4] or Ghosh and Ramamoorthy [30]. The situation becomes however more complicated in non- and semi-parametric models. Semiparametric versions of the BvM property consider the behaviour of the marginal posterior in a parameter of interest, in models potentially containing an infinite-dimensional nuisance parameter. There some care is typically needed in the choice of the non-parametric prior and a variety of questions linked to prior choice and techniques of proofs arise. Results on semiparametric BvM applicable to general models and/or general priors include Shen [41], Castillo [12], Rivoirard and Rousseau [40] and Bickel and Kleijn [5]. The variety of possible interactions between prior and model and the subtelties of prior choice are illustrated in the previous general papers and in recent results in specific models such as Kim [32], De Blasi and Hjort [21], Leahu [38], Knapik et al. [35], Castillo [13] and Kruijer and Rousseau [36]. Inbetween semi- and non-parametric results, BvM for parameters with growing dimension have been obtained in e.g. Ghosal [26], Boucheron and Gamiet [9] and Bontemps [8]. Finally, although there is no immediate analogue of the BvM property for infinite dimensional parameters, as pointed out by Cox [20] and Freedman [24], some recent contributions have introduced possible notions of nonparametric BvM, see Castillo and Nickl [15] and also Leahu [38]. In fact, the results of the present paper are relevant for these, as discussed below.

For semiparametric BvM, it is of particular interest to obtain generic sufficient conditions, that do not depend on the specific form of the considered model. In this paper, we provide a general result, Theorem 2.1 in Section 2, on the existence of the BvM property for generic models and functionals of the parameter. Let us briefly discuss the scope of our results, see Section 2 for precise definitions. Consider a model parameterised by η varying in a (subset of a) metric space S equipped with a σ-field \mathcal{S}. Let $\psi : S \rightarrow \mathbb{R}^d$, $d \geq 1$, be a measurable functional of interest and let Π be a probability distribution on S. Given observations Y^n from the model, we
study the asymptotic posterior distribution of $\psi(\eta)$, denoted $\Pi[\psi(\eta) \mid Y^n]$. Let $\mathcal{N}(0, V)$ denote the centered normal law with covariance matrix V. We give general conditions under which a BvM-type property is valid,

$$
\Pi \left[\sqrt{n}(\psi(\eta) - \hat{\psi}) \mid Y^n \right] \Rightarrow \mathcal{N}(0, V),
$$

as $n \to \infty$ in probability, where $\hat{\psi}$ is a (random) centering point, and V a covariance matrix, both to be specified, and where \Rightarrow stands for weak convergence. An interesting and well-known consequence of BvM is that posterior credible sets, such as equal-tail credible intervals, highest posterior density regions or one-sided credible intervals are also confidence regions with the same asymptotic coverage.

The contributions of the present paper can be regrouped around the following aims

1. Provide general conditions on the model and on the functional ψ to guarantee (1.1) to hold, in a variety of frameworks both i.i.d. and non-i.i.d. This includes investigating how the choice of the prior influences bias $\hat{\psi}$ and variance V. This also includes studying the case of nonlinear functionals, which involves specific techniques for the bias. This is done via a Taylor-type expansion of the functional involving a linear term as well as, possibly, an additional quadratic term.

2. In frameworks with low regularity, second order properties in the functional expansion may become relevant. We study this as an application of the main Theorem in the important case of estimation of the squared L^2-norm of an unknown regression function in the case where the convergence rate for the functional is still parametric but where the 'plug-in' property in the sense of Bickel and Ritov [7] is not necessarily satisfied.

3. Provide simple and ready-to-use sufficient conditions for BvM in the important example of density estimation on the unit interval. We present extensions and refinements in particular of results in Castillo [12] and Rivoirard and Rousseau [40] with respect respectively to use of Gaussian process priors in the context of density estimation and handling non-linear functionals. The class of random density histogram priors is also studied in details systematically for the first time in the context of Bayesian semiparametrics.

4. Provide simple sufficient conditions on the prior for BvM to hold in a more complex example involving dependent data, namely the nonlinear autoregressive model. To our knowledge this is the first result of this type in such a model.

The techniques and results of the paper, as it turned out, have also been useful for different purposes in a recent series of works developing a multiscale approach for posteriors, in particular: a) to prove functional limiting results, such as Bayesian versions of Donsker’s theorem, or more generally nonparametric BvM results as in Castillo and Nickl [16], a first step consists in proving the result for finite dimensional projections: this is exactly asking for a semiparametric BvM to hold, and results from Section 4 can be directly applied; b) related to this is the study of many functionals simultaneously: this is used in the study of posterior contraction rates in the supremum norm in Castillo [14]. Finally, along the way, we shall also derive posterior rate results for Gaussian processes which are of independent interest, see Proposition 2 (check number) in the supplement [18].

Our results show that the most important condition is a no-bias condition, which will be seen to be essentially necessary. This condition is written in a non explicit way in the general Theorem 2.1, since the study of such a condition depends heavily on the family of priors that are considered together with the statistical model. Extensive discussions on the implication of this no-bias condition are provided in the context of the white noise model and density models for two families of priors. In the examples we have considered, the main tool used to verify this condition consists in constructing a change of parameterisation in the form $\eta \to \eta + \Gamma / \sqrt{n}$ for some given Γ depending on the functional of interest, which leaves the prior approximately unchanged.
Roughly speaking for the no-bias condition to be valid, it is necessary that both \(\eta_0 \) and \(\Gamma \) are well approximated under the prior. If this condition is not verified, then BvM may not hold: an example of this phenomenon is provided in Section 4.3.

Theorem 2.1 does not rely on a specific type of model, nor on a specific family of functionals. In Section 3 it is applied to the study of a nonlinear functional in the white noise model, namely the squared-norm of the signal. Applications to density estimation with three different types of functionals and to an autoregressive model can be found respectively in Section 4 and Section 5. Section 6 is devoted to proofs, together with the supplement [18].

Model, prior and notation
Let \((\mathcal{Y}^n, \mathcal{G}^n, P^n_\eta, \eta \in S)\) be a statistical experiment, with observations \(Y^n\) sitting on a space \(\mathcal{Y}^n\) equipped with a \(\sigma\)-field \(\mathcal{G}^n\), and where \(n\) is an integer quantifying the available amount of information. We typically consider the asymptotic framework \(n \to \infty\). We assume that \(S\) is equipped with a \(\sigma\)-field \(\mathcal{S}\), that \(S\) is a subset of a linear space and that for all \(\eta \in S\), the measures \(P^n_\eta\) are absolutely continuous with respect to a dominating measure \(\mu_n\). Denote by \(p^n_\eta\) the associated density and by \(E_\eta(\cdot)\) the log--likelihood. Let \(\eta_0\) denote the true value of the parameter and \(P^n_{\eta_0}\), the frequentist distribution of the observations \(Y^n\) under \(\eta_0\). Throughout the paper we set \(P^n_0 := P^n_{\eta_0}\) and \(P_0 := P^n_0\). Similarly \(E^n_\eta(\cdot)\) and \(E_\eta(\cdot)\) denote the expectation under \(P^n_\eta\) and \(P_\eta\) respectively and \(E^n_\eta\) and \(E_\eta\) are the corresponding expectations under \(P^n_\eta\) and \(P_\eta\). Given any prior probability \(\Pi\) on \(S\), we denote by \(\Pi(\cdot)\) the associated posterior distribution on \(S\), given by Bayes formula: \(\Pi(B|Y^n) = \int_B p^n_\eta(Y^n)d\Pi(\eta)/\int p^n_\eta(Y^n)d\Pi(\eta)\). Throughout the paper, we use the notation \(\sigma_p\) in the place of \(\sigma_{p^n}\) for simplicity.

The quantity of interest in this paper is a functional \(\psi : S \to \mathbb{R}^d, d \geq 1\). We restrict in this paper to the case of real-valued functionals \(d = 1\), noting that the presented tools do have natural multivariate counterparts not detailed here for notational simplicity.

For \(\eta_1, \eta_2\) in \(S\), the Kullback-Leibler divergence between \(P^n_{\eta_1}\) and \(P^n_{\eta_2}\) is

\[
KL(P^n_{\eta_1}, P^n_{\eta_2}) := \int_{\mathcal{Y}^n} \log \left(\frac{dP^n_{\eta_1}(y^n)}{dP^n_{\eta_2}(y^n)} \right) dP^n_{\eta_1}(y^n),
\]

and the corresponding variance of the likelihood ratio is denoted by

\[
V_n(P^n_{\eta_1}, P^n_{\eta_2}) := \int_{\mathcal{Y}^n} \log^2 \left(\frac{dP^n_{\eta_1}(y^n)}{dP^n_{\eta_2}(y^n)} \right) dP^n_{\eta_1}(y^n) - KL(P^n_{\eta_1}, P^n_{\eta_2})^2.
\]

Let \(\| \cdot \|_2\) and \(\langle \cdot, \cdot \rangle_2\) denote respectively the \(L_2\) norm and the associated inner product on \([0, 1]\). We use also \(\| \cdot \|_1\) to denote the \(L_1\) norm on \([0, 1]\). For all \(\beta \geq 0\), \(C^\beta\) denotes the class of \(\beta\)-Hölder functions on \([0, 1]\) where \(\beta = 0\) corresponds to the case of continuous functions. Let \(h(f_1, f_2) = (\int_{[0,1]} (\sqrt{T_1} - \sqrt{T_2})^2 d\mu) \chi_{[0,1]}^{1/2}\) stand for the Hellinger distance between two densities \(f_1\) and \(f_2\) relative to a measure \(\mu\). For \(g\) integrable on \([0, 1]\) with respect to Lebesgue measure, we often write \(\int_{[0,1]} g\) or \(\int g\) instead of \(\int_{[0,1]} g(x)dx\). For two real-valued functions \(A, B\) (defined on \(\mathbb{R}\) or on \(\mathbb{N}\)), we write \(A \lesssim B\) if \(A/B\) is bounded and \(A \simeq B\) if \(|A/B|\) is bounded away from 0 and \(\infty\).

2 Main result
In this section, we give the general theorem which provides sufficient conditions on the model, the functional and the prior for BvM to be valid.

We say that the posterior distribution for the functional \(\psi(\eta)\) is asymptotically normal with centering \(\psi_n\) and variance \(V\) if, for \(\beta\) the bounded Lipschitz metric (also known as Lévy-Prohorov metric) for weak convergence, see Section 1 in the supplement [18], and \(\tau_n\) the mapping \(\tau_n : \eta \to \sqrt{n}(\psi(\eta) - \psi_n)\), it holds, as \(n \to \infty\), that

\[
\beta(\Pi(\cdot|Y^n) \circ \tau_n^{-1}, \mathcal{N}(0, V)) \to 0,
\] (2.1)
in \(P^n_0\)-probability, which we also denote \(\Pi[, \cdot | Y^n] \circ \tau_n^{-1} \sim \mathcal{N}(0, V)\).

In models where an efficiency theory at rate \(\sqrt{n}\) is available, we say that the posterior distribution for the functional \(\psi(\eta)\) at \(\eta = \eta_0\) satisfies the BeM Theorem if (2.1) holds with \(\hat{\psi}_n = \hat{\psi}_n + o_p(1/\sqrt{n})\), for \(\hat{\psi}_n\) a linear efficient estimator of \(\psi(\eta)\) and \(V\) the efficiency bound for estimating \(\psi(\eta)\). For instance, for i.i.d. models and a differentiable functional \(\psi\) with efficient influence function \(\hat{\psi}_0\), see e.g. [42] Chap. 25, the efficiency bound is attained if \(V = P^n_0 \left[\hat{\psi}_0^2 \right]\). Let us now state the assumptions which will be required.

Let \(A_n\) be a sequence of measurable sets such that, as \(n \to \infty\),

\[
\Pi[A_n | Y^n] = 1 + o_p(1). \tag{2.2}
\]

We assume that there exists a Hilbert space \((\mathcal{H}, \langle \cdot, \cdot \rangle_L)\) with associated norm denoted \(\| \cdot \|_L\), and for which the inclusion \(A_n - \eta_0 \subset \mathcal{H}\) is satisfied for large enough. Note that we do not necessarily assume that \(S \subset \mathcal{H}\), as \(\mathcal{H}\) gives a local description of the parameter space near \(\eta_0\) only. Note also that \(\mathcal{H}\) may depend on \(n\). The norm \(\| \cdot \|_L\) typically corresponds to the LAN (locally asymptotically normal) norm as described in (2.3) below.

Let us first introduce some notation, which corresponds to expanding both the log-likelihood \(\ell_n(\eta) := \ell_n(\eta, Y^n)\) in the model and the functional of interest \(\psi(\eta)\). Both expansions have remainders \(R_n\) and \(r\) respectively.

LAN expansion. Write, for all \(\eta \in A_n\),

\[
\ell_n(\eta) - \ell_n(\eta_0) = \frac{-n\|\eta - \eta_0\|_L^2}{2} + \sqrt{n}W_n(\eta - \eta_0) + R_n(\eta, \eta_0), \tag{2.3}
\]

where \((W_n(h), h \in \mathcal{H})\) is a collection of real random variables verifying that, \(P^n_0\)-almost surely, the mapping \(h \to W_n(h)\) is linear, and that for all \(h \in \mathcal{H}\), we have \(W_n(h) \to \mathcal{N}(0, \|h\|_L^2)\) as \(n \to \infty\).

Functional smoothness. Consider \(\psi^{(1)}_0 \in \mathcal{H}\) and a self-adjoint linear operator \(\psi^{(2)}_0 : \mathcal{H} \to \mathcal{H}\) and write, for any \(\eta \in A_n\),

\[
\psi(\eta) = \psi(\eta_0) + \langle \psi^{(1)}_0, \eta - \eta_0 \rangle_L + \frac{1}{2} \langle \psi^{(2)}_0 (\eta - \eta_0), \eta - \eta_0 \rangle_L + r(\eta, \eta_0), \tag{2.4}
\]

where there exists a positive constant \(C_1\) such that

\[
\|\psi^{(2)}_0 h\|_L \leq C_1\|h\|_L \quad \forall h \in \mathcal{H}, \quad \text{and} \quad \|\psi^{(1)}_0\|_L \leq C_1. \tag{2.5}
\]

Note that both formulations, on the functional smoothness and on the LAN expansion, are not assumptions since nothing is required yet on \(r(\eta, \eta_0)\) or on \(R(\eta, \eta_0)\). This is done in assumption A. The norm \(\| \cdot \|_L\) is typically identified from a local asymptotic normality property of the model at the point \(\eta_0\). It is thus intrinsic to the considered statistical model. Next, the expansion of \(\psi\) around \(\eta_0\) is in term of the latter norm: since this norm is intrinsic to the model, this can be seen as a canonical choice.

Consider two cases, depending on the value of \(\psi^{(2)}_0\) in (2.4). The first case corresponds to a first-order analysis of the problem. It ignores any potential non-linearity in the functional \(\eta \to \psi(\eta)\) by considering a linear approximation with representer \(\psi^{(1)}_0\) in (2.4) and shifting any remainder term into \(r\).

Case A1. We set \(\psi^{(2)}_0 = 0\) in (2.4) and, for all \(\eta \in A_n\) and \(t \in \mathbb{R}\) define

\[
\eta_t = \eta - \frac{t\psi^{(1)}_0}{\sqrt{n}}. \tag{2.6}
\]

Case A2. We allow for a nonzero second-order term \(\psi^{(2)}_0\) in (2.4). In this case we need a few more assumptions. One is simply the existence of some posterior convergence rate in \(\| \cdot \|_L\)-norm. Suppose that, for some sequence \(\varepsilon_n = o(1)\) and \(A_n\) as in (2.2),

\[
\Pi[\eta \in A_n; \|\eta - \eta_0\|_L \leq \varepsilon_n/2 | Y^n] = 1 + o_p(1). \tag{2.7}
\]
Next, we assume that the action of the process W_n above can be approximated by an inner-product, with a representor w_n, which will be particularly useful in defining a suitable path η enabling to handle second-order terms.

Suppose that there exists $w_n \in \mathcal{H}$ such that, for all $h \in \mathcal{H}$,

$$W_n(h) = \langle w_n, h \rangle_L + \Delta_n(h), \quad P_0^n-\text{almost surely},$$

where the remainder term $\Delta_n(\cdot)$ is such that

$$\sup_{\eta \in A_n} \left| \Delta_n(\psi_0^{(2)}(\eta - \eta_0)) \right| = o_p(1)$$

(2.9)

and where one further assumes that

$$(w_n, \psi_0^{(2)}(\psi_0^{(1)}))_L + \varepsilon_n \|w_n\|_L = o_p(\sqrt{n}).$$

(2.10)

Finally, set, for all $\eta \in A_n$ and w_n as in (2.8), for all $t \in \mathbb{R}$,

$$\eta_t = \eta - \frac{t\psi_0^{(1)}}{\sqrt{n}} - \frac{t\psi_0^{(2)}(\eta - \eta_0)}{2\sqrt{n}} = - \frac{t\psi_0^{(2)} w_n}{2n}. \quad \eta_t \in A_n$$

(2.11)

Assumption A. In Cases A1 and A2, with η defined by (2.6) and (2.11) respectively, assume that for all $t \in \mathbb{R}$, $\eta_t \in \mathcal{S}$ for n large enough and that

$$\sup_{\eta \in A_n} \left| t\sqrt{n}r(\eta, \eta_0) + R_n(\eta, \eta_0) - R_n(\eta_t, \eta_0) \right| = o_p(1).$$

(2.12)

The suprema in the previous display may not be measurable, in this case one interprets the previous probability statements in terms of outer measure.

We then provide a characterisation of the asymptotic distribution of $\psi(\eta)$. At first read, one may set $\psi_0^{(2)} = 0$ in the next Theorem: this provides a first-order result that will be used repeatedly in Sections 4 and 5. The complete statement allows for a second order analysis via a possibly non-zero $\psi_0^{(2)}$ and will be applied in Section 3.

Theorem 2.1. Consider a statistical model $\{P_n^\eta, \eta \in \mathcal{S}\}$, a real-valued functional $\eta \to \psi(\eta)$ and $\langle \cdot , \cdot \rangle_L, \psi_0^{(1)}, \psi_0^{(2)}, W_n, w_n$ as defined above. Suppose that Assumption A is satisfied, and denote

$$\hat{\psi} = \psi(\eta_0) + \frac{W_n(\psi_0^{(1)})}{\sqrt{n}} + \frac{(w_n, \psi_0^{(2)} w_n)_L}{2n}, \quad V_{0,n} = \left\| \psi_0^{(1)} - \psi_0^{(2)} w_n \frac{2}{2n} \right\|_L^2.$$

(2.13)

Let Π be a prior distribution on η. Let A_n be any measurable set such that (2.2) holds. Then for any real t with η_t as in (2.11),

$$E_{\Pi} \left[e^{t\sqrt{n}(\psi(\eta) - \hat{\psi})} | Y_n, A_n \right] = e^{\psi_0^{(1)} + \frac{t^2 V_{0,n}}{2}} \frac{\int_{A_n} e^{\ell_n'(\eta) - \ell_n(\eta_0)} d\Pi(\eta)}{\int_{A_n} e^{\ell_n'(\eta) - \ell_n(\eta_0)} d\Pi(\eta)}.$$

(2.13)

Moreover if $V_{0,n} = V_0 + o_p(1)$ for some $V_0 > 0$ and if for some possibly random sequence of reals μ_n, for any real t,

$$\frac{\int_{A_n} e^{\ell_n'(\eta) - \ell_n'(\eta_0)} d\Pi(\eta)}{\int_{A_n} e^{\ell_n'(\eta) - \ell_n(\eta_0)} d\Pi(\eta)} = e^{\mu_n t} \left(1 + o_p(1) \right),$$

(2.14)

then the posterior distribution of $\sqrt{n}(\psi(\eta) - \hat{\psi}) - \mu_n$ is asymptotically normal and mean-zero, with variance V_0.

The proof of Theorem 2.1 is given in Section 6.1.
Corollary 1. Under the conditions of Theorem 2.1, if (2.14) holds with $\mu_n = o_p(1)$ and $\|\psi^{(2)}_n\|_L = o_p(\sqrt{n})$, then the posterior distribution of $\sqrt{n}(\psi(\eta) - \hat{\psi})$ is asymptotically mean-zero normal, with variance $\|\psi^{(1)}_0\|^2_L$.

Assumption A ensures that the local behaviour of the likelihood resembles the one in a Gaussian experiment with norm $\|\cdot\|_L$. An assumption of this type is expected, as the target distribution in the BvM theorem is Gaussian. As will be seen in the examples in Sections 3, 4 and 5, A_n is often a well chosen subset of a neighbourhood of η_0, with respect to a given metric, which need not be the LAN norm $\|\cdot\|_L$.

We note that for simplicity here we restrict to approximating paths η_t to η_0 in (2.6) (first order results) and (2.11) (second order results) that are linear in the perturbation. This covers already a few interesting models. More generally, some models may be locally curved results and (2.11) (second order results) that are linear in the perturbation. This covers already a well chosen subset of a neighbourhood of η_0, with respect to a given metric, which need not be the LAN norm $\|\cdot\|_L$. For instance, in density estimation, Gaussian process priors and piecewise constant priors are considered and Propositions 1 and 3 below give a set of sufficient conditions that guarantee (2.13) for each class of priors.

The central condition for applying Theorem 2.1 is (2.13). To check this condition, a possible approach is to construct a change of parameter from η to η_0 (or some parameter close enough to η_0) which leaves the prior and A_n approximately unchanged. More formally, let ψ_n be an approximation of $\psi^{(1)}_0$ in a sense to be made precise below and let $\Pi^{\psi_n} := \Pi \circ (\tau^{\psi_n})^{-1}$ denote the image measure of Π through the mapping

$$\tau^{\psi_n} : \eta \rightarrow \eta - t\psi_n/\sqrt{n}.$$

To check (2.13), one may for instance suppose that the measures Π^{ψ_n} and Π are mutually absolutely continuous and that the density $d\Pi/d\Pi^{\psi_n}$ is close to the quantity $e^{\psi_n t}$ on A_n. This is the approach we follow for various models and priors in the sequel. In particular, we prove that a functional change of variable is possible for various classes of prior distributions. For instance, in density estimation, Gaussian process priors and piecewise constant priors are considered and Propositions 1 and 3 below give a set of sufficient conditions that guarantee (2.13) for each class of priors.

Remark 1. Here the main focus is on estimation of abstract semiparametric functionals $\psi(\eta)$. Our results also apply to the case of separated semiparametric models where $\eta = (\psi, f)$ and $\psi(\eta) = \psi \in \mathbb{R}$, as considered in [12], with a weak convergence to the normal distribution instead of a strong convergence obtained in [12]. We have $\psi(\eta) - \psi(\eta_0) = \langle \eta - \psi, f \rangle$ where ψ is the least favorable direction and $I_{\eta_0} = \|\psi, f\|^2_L$, see [12]. We can then choose $\psi^{(1)}_0 = (1, -\gamma)/I_{\eta_0}$ in [12]. If $\gamma = 0$ (no loss of information), $\eta_t = (\psi - tI^{-1}/\sqrt{n}, f)$ and (2.13) is satisfied if $\sigma = \pi_{\psi} \otimes \pi_f$ with π_{ψ} positive and continuous at $\psi(\eta_0)$, so that we obtain a similar result as Theorem 1 of [12]. In [12] a slightly weaker version of condition (2.12) is considered; however the proof of Section 6.1 can be easily adapted—in the case of separated semiparametric models—so that the result holds under the weaker version of (2.12) as well.

Remark 2. As follows from the proof of Theorem 2.1, $\psi^{(1)}_0$ can be replaced by any element, say $\tilde{\psi}$ of \mathcal{H} such that

$$\langle \psi, \eta - \eta_0 \rangle_L = \langle \psi^{(1)}_0, \eta - \eta_0 \rangle_L, \quad \|\tilde{\psi}\|_L = \|\psi^{(1)}_0\|_L,$$

where $\tilde{\psi}$ may potentially depend on η. This proves to be useful when considering constraint spaces as in the case of density estimation.

We now apply Theorem 2.1 in the cases of white noise, density and autoregressive models and for various types of functionals and priors.
3 Applications to the white noise model

Consider the model
\[dY^n(t) = f(t)dt + n^{-1/2}dB(t), \quad t \in [0, 1], \]
where \(f \in L^2[0, 1] \) and \(B \) is standard Brownian motion. Let \((\phi_k)_{k \geq 1}\) be an orthonormal basis for \(L^2[0, 1] := L^2 \). The model can be rewritten
\[Y_k = f_k + n^{-1/2}\epsilon_k, \quad f_k = \int_0^1 f(t)\phi_k(t)dt, \quad \epsilon_k \sim N(0,1) \text{ i.i.d} \quad k \geq 1. \]
The likelihood admits a LAN expansion, with \(\eta = f \) here, \(\| \cdot \|_L = \| \cdot \|_2 \) and \(R_n = 0: \)
\[\ell_n(f) - \ell_n(f_0) = \frac{n\|f - f_0\|^2}{2} + \sqrt{n}W(f - f_0), \]
where for any \(u \in L^2 = H \) with coefficients \(u_k = \int_0^1 u(t)\phi_k(t)dt \), we set \(W(u) = \sum_{k \geq 1} \epsilon_k u_k \).
In this model consider the squared-\(L^2 \) norm as a functional of \(f \). Set
\[\psi(f) = \| f \|^2 = \psi(f_0) + 2\langle f_0, f - f_0\rangle + \| f - f_0 \|^2, \]
\[\psi_0^{(1)} = 2f_0, \quad \psi_0^{(2)} h = 2h, \quad r(f, f_0) = 0. \]
The functional has been extensively studied in the frequentist literature, see [6], [23], [37], [25] and [10] to name but a few, as it is used in many testing problems. The verification of assumption \(A \) and of condition (2.14) is prior-dependent and is considered within the proof of the next Theorem.
Suppose that the true function \(f_0 \) belongs to the Sobolev class
\[W_\beta := \{ f \in L^2, \sum_{k \geq 1} k^{2\beta}(f, \phi_k)^2 < \infty \} \]
of order \(\beta > 1/4 \). First, one should note that, while the case \(\beta > 1/2 \) can be treated using the first-order term of the expansion of the functional only (case \(A_1 \)), the case \(1/4 < \beta < 1/2 \) requires the conditions from case \(A_2 \) as the second order term cannot be neglected. This is related to the fact that the so-called plug-in property in [7] does not work for \(\beta < 1/2 \). An analysis based on second order terms as in Theorem 2.1 is thus required. The case \(\beta \leq 1/4 \) is interesting too, but one obtains a rate slower than \(1/\sqrt{n} \), see e.g. Cai and Low [10] and references therein, and a BvM result in a strict sense does not hold. Although a BvM-type result can be obtained essentially with the tools developed here, its formulation is more complicated and this case will be treated elsewhere. When \(\beta > 1/4 \), a natural frequentist estimator of \(\psi(\eta) \) is
\[\tilde{\psi} := \tilde{\psi}_n := \sum_{k=1}^{K_n} \left[Y_k^2 - \frac{1}{n} \right], \quad \text{with} \quad K_n = \lfloor n/\log n \rfloor. \]
Now define a prior \(\Pi \) on \(f \) by sampling independently each coordinate \(f_k, k \geq 1 \) in the following way. Given a density \(\varphi \) on \(\mathbb{R} \) and a sequence of positive real numbers \((\sigma_k)_k\), set \(K_n = \lfloor n/\log n \rfloor \) and
\[f_k \sim \frac{1}{\sigma_k} \varphi\left(\cdot, \frac{1}{\sigma_k} \right) \quad \text{if} \quad 1 \leq k \leq K_n, \quad \text{and} \quad f_k = 0 \quad \text{if} \quad k > K_n, \quad (3.1) \]
In particular we focus on the cases where \(\varphi \) is either the standard Gaussian density or \(\varphi(x) = 1|_{-M,M}(x)/\mathcal{M}, \mathcal{M} > 0 \), called respectively Gaussian \(\varphi \) and Uniform \(\varphi \).
Suppose that there exists \(M > 0 \) such that, for any \(1 \leq k \leq K_n \),
\[\frac{|f_{0,k}|}{\sigma_k} \leq M \quad \text{and} \quad \sigma_k \geq \frac{1}{\sqrt{n}}. \quad (3.2) \]
Theorem 3.1. Suppose the true function f_0 belongs to the Sobolev space W_β of order $\beta > 1/4$. Let the prior Π and K_n be chosen according to (3.1) and let $f_0, \{\sigma_k\}$ satisfy (3.2). Consider the following choices for φ

1. Gaussian φ. Suppose that as $n \to \infty$,

$$
\frac{1}{\sqrt{n}} \sum_{k=1}^{K_n} \frac{\sigma_k^{-2}}{n} = o(1).
$$

2. Uniform φ. Suppose $M > 4 \vee (16M)$ and that for any $c > 0$

$$
\sum_{k=1}^{K_n} \sigma_k e^{-c n \sigma_k^2} = o(1)
$$

Then, in P_{f_0}-probability, as $n \to \infty$,

$$
\Pi \left(\sqrt{n} \left(\psi(f) - \bar{\psi} - \frac{2K_n}{n} \right) | Y^n \right) \to \mathcal{N}(0, 4\|f_0\|_2^2).
$$

The proof of Theorem 3.1 is given in Section 2.2 of the supplement [18].

Theorem 3.1 gives the BvM theorem for the non-linear functional $\psi(f) = \int f^2$, up to a (known) bias term $2K_n/n$. Indeed it implies that the posterior distribution of $\psi(f) - \bar{\psi}_n = \psi(f) - \bar{\psi} - 2K_n/n$ is asymptotically Gaussian with mean 0 and variance $4\|f_0\|_2^2/n$ which is the inverse of the efficient information (divided by n). Recall that $\bar{\psi}$ is an efficient estimate when $\beta > 1/4$, see for instance [10]. Therefore, even though the posterior distribution of $\psi(f)$ does not satisfy the BvM theorem per se, it can be modified a posteriori by recentering with the known quantity $2K_n/n$ to lead to a BvM theorem. The possibility of existence of a Bayesian nonparametric prior leading to a BvM theorem is an interesting phenomenon appears when comparing the two examples of priors considered in Theorem 3.1. If $\sigma_k = k^{-\delta}$, for some $\delta \in \mathbb{R}$, condition (3.3) holds for any $\delta \leq 1/4$ in the Gaussian φ case, whereas (3.4) only requires $\delta < 1/2$ in the Uniform φ case, this for any f_0 in $W_{1/4}$ intersected with the H"older-type space $\{f_0 : |f_0| \leq Mk^{-\delta}, \ k \geq 1\}$. One can conclude that fine details of the prior (here, the specific form of φ chosen, for given variances $\{\sigma_k^2\}$) really matter for BvM to hold in this case. Indeed, it can be checked that the condition for the Gaussian prior is sharp:

while the proof of Theorem 3.1 is an application of the general Theorem 2.1, a completely different proof can be given for Gaussian priors using conjugacy, similar in spirit to [35], leading to (3.3) as a necessary condition. Hence, choosing $\sigma_k \geq k^{-1/4}$ leads to a posterior distribution satisfying the BvM property adaptively over Sobolev balls with smoothness $\beta > 1/4$.

The introduced methodology also allows us to provide conditions under generic smoothness assumptions on φ. For instance if the density φ of the prior is a Lipschitz function on \mathbb{R}, then the conclusion of Theorem 3.1 holds when, as $n \to \infty$,

$$
\sum_{k=1}^{K_n} \sigma_k^{-1} = o(1).
$$
This last condition is not sharp in general (compare for instance with the sharp (3.3) in the Gaussian case), but provides a sufficient condition for a variety of prior distributions, including light and heavy tails behaviours. For instance, if \(\sigma_k = k^{-d} \), then (3.6) asks for \(\delta \leq 0 \).

4 Application to the density model

The case of functionals of the density is another interesting application of Theorem 2.1. The case of linear functionals of the density has first been considered by [40]. Here we obtain a broader version of Theorem 2.1 in [40], which weakens the assumptions for the case of linear functionals and also allows for nonlinear functionals.

4.1 Statement

Let \(Y^n = (Y_1, \ldots, Y_n) \) be independent and identically distributed, having density \(f \) with respect to Lebesgue measure on the interval \([0, 1]\). In all of this Section, we assume that the true density \(f_0 \) belongs to the set \(F_0 \) of all densities that are bounded away from \(0 \) and \(\infty \) on \([0, 1]\). Let us consider \(A_n = \{ f; \| f - f_0 \|_1 \leq \epsilon_n \} \) where \(\epsilon_n \) is a sequence decreasing to \(0 \), or any set of the form \(A_n \cap F_n \), as long as \(P_n \Pi(F_n | Y^n) \to 0 \). Define

\[
L^2(f_0) = \{ \varphi : [0, 1] \to \mathbb{R}, \int_0^1 \varphi(x)^2 f_0(x) dx < \infty \}.
\]

For any \(\varphi \) in \(L^2(f_0) \), let us write \(F_0(\varphi) \) as shorthand for \(\int_0^1 \varphi(x) f_0(x) dx \) and set, for any positive density \(f \) on \([0, 1]\),

\[
\eta = \log f, \quad \eta_0 = \log f_0, \quad h = \sqrt{n}(\eta - \eta_0).
\]

Following [40], we have the LAN expansion

\[
\ell_n(\eta) - \ell_n(\eta_0) = \sqrt{n} F_0(h) + \frac{1}{\sqrt{n}} \sum_{i=1}^n [h(Y_i) - F_0(h)]
\]

\[
= -\frac{1}{2} \| h \|_2^2 + W_n(h) + R_n(\eta, \eta_0),
\]

with the following notation, for any \(g \) in \(L^2(f_0) \),

\[
\| g \|_2^2 = \int_0^1 (g - F_0(g))^2 f_0, \quad W_n(g) = \mathcal{G}_n g = \frac{1}{\sqrt{n}} \sum_{i=1}^n [g(Y_i) - F_0(g)],
\]

and \(R_n(\eta, \eta_0) = \sqrt{n} F_0 h + \frac{1}{2} \| h \|_2^2 \). Note that \(\| \cdot \|_L \) is an Hilbertian norm induced by the inner-product \((g_1, g_2)_L = \int g_1 g_2 f_0 \) defined on the space \(\mathcal{H}_T := \{ g \in L^2(P_0), \int g \, f_0 = 0 \} \subset \mathcal{H} = L^2(f_0) \), the so-called maximal tangent set at \(f_0 \).

We consider functionals \(\psi(f) \) of the density \(f \), which are differentiable relative to (a dense subset of) the tangent set \(\mathcal{H}_T \) with efficient influence function \(\tilde{\psi}_{f_0} \), see [42], Chap. 25. In particular \(\tilde{\psi}_{f_0} \) belongs to \(\mathcal{H}_T \), so \(F_0(\tilde{\psi}_{f_0}) = 0 \). We further assume that \(\tilde{\psi}_{f_0} \) is bounded on \([0, 1]\). Set

\[
\psi(f) - \psi(f_0) = \langle \frac{f - f_0}{f_0}, \tilde{\psi}_{f_0} \rangle_L + \tilde{r}(f, f_0)
\]

\[
= \langle \eta - \eta_0 - F_0(\eta - \eta_0), \tilde{\psi}_{f_0} \rangle_L + \mathcal{B}(f, f_0) + \tilde{r}(f, f_0), \quad \eta = \log f,
\]

where \(\mathcal{B}(f, f_0) \) is the difference

\[
\mathcal{B}(f, f_0) = \int_0^1 \left[\eta - \eta_0 - \frac{f - f_0}{f_0} \right] (x) \tilde{\psi}_{f_0}(x) f_0(x) dx,
\]

and define \(r(f, f_0) = \mathcal{B}(f, f_0) + \tilde{r}(f, f_0) \).
Theorem 4.1. Let ψ be a differentiable functional relative to the tangent set \mathcal{H}_T, with efficient influence function $\tilde{\psi}_{f_0}$, bounded on $[0,1]$. Let \tilde{r} be defined by (4.2). Suppose that for some $\varepsilon_n \to 0$ it holds

$$\Pi[f: \|f - f_0\|_1 \leq \varepsilon_n | Y^n] \to 1,$$ \hspace{1cm} (4.3)

in P_0-probability and that, for $A_n = \{f, \|f - f_0\|_1 \leq \varepsilon_n\}$,

$$\sup_{f \in A_n} \tilde{r}(f, f_0) = o(1/\sqrt{n}).$$

Set $\eta = \eta - \frac{1}{\sqrt{n}} \tilde{\psi}_{f_0} - \log \int_0^1 e^{\eta - \frac{1}{\sqrt{n}} \tilde{\psi}_{f_0}}$ and assume that in P_0-probability

$$\int_{A_n} e^{\eta(n) - \tilde{\psi}_{f_0}(n_0)}d\Pi(n) \int e^{\eta(n) - \tilde{\psi}_{f_0}(n_0)}d\Pi(n) \to 1.$$ \hspace{1cm} (4.4)

Then, for $\hat{\psi}$ any linear efficient estimator of $\psi(f)$, the BeM theorem holds for the functional ψ. That is, the posterior distribution of $\sqrt{n}(\hat{\psi}(f) - \psi)$ is asymptotically Gaussian with mean 0 and variance $\|\tilde{\psi}_{f_0}\|_L^2$ in P_0-probability.

The semiparametric efficiency bound for estimating ψ is $\|\tilde{\psi}_{f_0}\|_L^2$ and linear efficient estimators of ψ are those for which $\hat{\psi} = \psi(f_0) + G_n(\tilde{\psi}_{f_0})/\sqrt{n} + o_p(1/\sqrt{n})$, see e.g. van der Vaart [42], Chap. 25, so Theorem 4.1 yields the BvM Theorem (with best possible limit distribution).

Remark 3. The L^1-distance between densities in Theorem 4.1 can be replaced by Hellinger’s distance $h(\cdot, \cdot)$ up to replacing ε_n by $\varepsilon_n/\sqrt{2}$.

Theorem 4.1 is proved in Section 6 and is deduced from Theorem 2.1 with $\psi^{(1)} = 0$ and $\psi^{(2)} = \tilde{\psi}_{f_0} - t^{-1} \sqrt{n} \log \int_0^1 e^{\eta - \frac{1}{\sqrt{n}} \tilde{\psi}_{f_0}}$. The condition $\sup_{f \in A_n} \tilde{r}(f, f_0) = o(1/\sqrt{n})$, together with (4.3) imply assumption A. It improves on Theorem 2.1 of [40] in the sense that an L_1-posterior concentration rate is required instead of a posterior concentration rate in terms of the LAN norm $\| \cdot \|_L$, it is also a generalisation to approximately linear functionals, which include the following examples.

Example 4.1 (Linear functionals). Let $\psi(f) = \int_0^1 f(x)a(x)dx$, for some bounded function a. Then, writing f as shorthand for f_0,

$$\psi(f) - \psi(f_0) = \langle \frac{f - f_0}{f_0}, a - \int a f_0 \rangle_L$$

with the efficient influence function $\tilde{\psi}_{f_0} = a - \int a f_0$. In this case, $\tilde{r}(f, f_0) = 0$.

Example 4.2 (Entropy functional). Let $\psi(f) = \int_0^1 f(x) \log f(x)dx$, for f bounded away from 0 and infinity. Then

$$\psi(f) - \psi(f_0) = \langle \frac{f - f_0}{f_0}, \log f_0 - \int f_0 \log f_0 \rangle_L + \int f \log \frac{f}{f_0},$$

with the efficient influence function $\tilde{\psi}_{f_0} = \log f_0 - \int f_0 \log f_0$. In this case, $\tilde{r}(f, f_0) = \int \log \frac{f}{f_0}$. For the two types of priors considered below, under some smoothness assumptions on f_0, it holds $\sup_{f \in A_n} \tilde{r}(f, f_0) = o(1/\sqrt{n})$.

Example 4.3 (Square-root functional). Let $\psi(f) = \int_0^1 \sqrt{f(x)}dx$, for f a bounded density. Then

$$\psi(f) - \psi(f_0) = \frac{1}{2} \int \frac{f - f_0}{f_0}, \frac{1}{\sqrt{f_0}} + \int \frac{\sqrt{f_0} - \sqrt{f}}{\sqrt{f_0} + \sqrt{f}} = \frac{1}{2} \int \frac{\sqrt{f_0} - \sqrt{f}}{\sqrt{f_0} + \sqrt{f}}$$

with the efficient influence function $\tilde{\psi}_{f_0} = \frac{1}{2} \left(\frac{1}{\sqrt{f_0}} - \int \frac{1}{\sqrt{f_0}} \right)$. In this case, $\tilde{r}(f, f_0) = - \int \frac{\sqrt{f_0} - \sqrt{f}}{2\sqrt{f_0}}$. In particular, the remainder term of the functional expansion is bounded by a constant times the square of the Hellinger distance between densities, hence as soon as $\varepsilon_n^2 \sqrt{n} = o(1)$, if A_n is written in terms of h, see Remark 3, one has $\sup_{f \in A_n} \tilde{r}(f, f_0) = o(1/\sqrt{n})$.

10
Example 4.4 (Power functional). Let $\psi(f) = \int_0^1 f(x)^q dx$, for f a bounded density and $q \geq 2$ an integer. Then

$$\psi(f) - \psi(f_0) = \left(\frac{f - f_0}{f_0} \right) q f_0^{q-1} - q \int f_0^q dx + r(f, f_0).$$

The remainder $r(f, f_0)$ is a sum of terms of the form $f((f - f_0)^{2+s} f_0^{2-2s})$, for $0 \leq s \leq q - 2$ an integer. For the two types of priors considered below, $\sup_{f \in A_n^*} r(f, f_0) = o(1/\sqrt{n})$, under some smoothness assumptions on f_0.

We now consider two families of priors: random histograms and Gaussian process priors. For each family, we provide a key no-bias condition for BvM on functionals to be valid. For each the idea is based on a certain functional change of variables formula. To simplify the notation we write $\tilde{\psi} = \tilde{\psi}_{f_0}$ in the sequel.

4.2 Random histograms

For any $k \in \mathbb{N}^*$, consider the partition of $[0, 1]$ defined by $I_j = [(j - 1)/k, j/k)$ for $j = 1, \ldots, k$. Denote by

$$\mathcal{H}_k = \{ g \in L^2[0, 1], \quad g(x) = \sum_{j=1}^k g_j \mathbb{1}_{I_j}(x), \quad g_j \in \mathbb{R}, \quad j = 1, \ldots, k \}$$

the set of all regular histograms with k bins on $[0, 1]$. Let $\mathcal{S}_k = \{ \omega \in [0, 1]^k, \sum_{j=1}^k \omega_j = 1 \}$ be the unit simplex in \mathbb{R}^k and denote \mathcal{H}_k^1 the subset of \mathcal{H}_k consisting of histograms which are densities on $[0, 1]$:

$$\mathcal{H}_k^1 = \{ f \in L^2[0, 1], \quad f(x) = f_{\omega,k} = k \sum_{j=1}^k \omega_j \mathbb{1}_{I_j}(x), \quad (\omega_1, \ldots, \omega_k) \in \mathcal{S}_k \}.$$

A prior on \mathcal{H}_k^1 is completely specified by the distributions of k and of $(\omega_1, \ldots, \omega_k)$ given k. Conditionally on k, we consider a Dirichlet prior on $\omega = (\omega_1, \ldots, \omega_k)$:

$$\omega \sim \mathcal{D}(\alpha_1, \ldots, \alpha_k), \quad c_1 k^{-\alpha} \leq \alpha_j \leq c_2,$$

for some fixed constants $a, c_1, c_2 > 0$ and any $1 \leq j \leq k$.

Consider two situations: either a deterministic number of bins with $k = K_n = o(n)$ or, for π_k a distribution on positive integers,

$$k \sim \pi_k, \quad e^{-b_1 k \log(k)} \leq \pi_k(k) \leq e^{-b_2 k \log(k)},$$

for all k large enough and some $0 < b_2 < b_1 < \infty$. Condition (4.6) is verified for instance by the Poisson distribution which is commonly used in Bayesian nonparametric models, see for instance [3].

The set \mathcal{H}_k is a closed subspace of $L^2[0, 1]$. For any function h in $L^2[0, 1]$, consider its projection $h_{[k]}$ in the L^2-sense on \mathcal{H}_k. It holds

$$h_{[k]} = \sum_{j=1}^k \int_{I_j} h \mathbb{1}_{I_j}.$$
with $\| \cdot \|_L, G_n$ as in (4.1). Finally, for $n \geq 2$, $k \geq 1$, $M > 0$, denote
\begin{align*}
A_{n,k}(M) = \{ f \in H^1_k, h(f, f_{0|k}) \leq M \varepsilon_{n,k} \}, \quad \text{with} \quad \varepsilon_{n,k}^2 = \frac{k \log n}{n}. \tag{4.8}
\end{align*}

In Section 6.3, we shall see that the posterior distribution of k concentrates on a deterministic subset \mathcal{K}_n of $\{1, \cdots, \lfloor n/(\log n)^2 \rfloor \}$ and that under the following technical condition on the weights, as $n \to \infty$,
\begin{align*}
\sup_{k \in \mathcal{K}_n} \sum_{j=1}^k \alpha_{j,k} = o(\sqrt{n}), \tag{4.9}
\end{align*}
the conditional posterior distribution given k, concentrates on the sets $A_{n,k}(M)$. It can then be checked that
\begin{align*}
\Pi \left[\sqrt{n}(\psi - \hat{\psi}) \leq z | Y^n \right] \\
= \sum_{k \in \mathcal{K}_n} \Pi_k(\psi_k'|Y^n) \Pi \left[\sqrt{n}(\hat{\psi} - \psi_k) \leq z + \sqrt{n}(\hat{\psi} - \psi_k)|Y^n, k \right] + o_p(1) \\
= \sum_{k \in \mathcal{K}_n} \Pi_k(\psi_k'|Y^n) \Phi((z + \sqrt{n}(\hat{\psi} - \psi_k))/\sqrt{V_k}) + o_p(1).
\end{align*}
The last line expresses that the posterior is asymptotically close to a mixture of normals, and that the mixture reduces to the target law $N(0, V)$ if V_k goes to V and $\sqrt{n}(\hat{\psi} - \psi_k)$ to 0, uniformly for k in \mathcal{K}_n. The last quantity can also be rewritten
\begin{align*}
\sqrt{n}(\hat{\psi}_k - \tilde{\psi}) &= \sqrt{n}(\psi(f_{0|k}) - \hat{\psi}(f_0)) + G_n(\tilde{\psi} - \hat{\psi}) \\
&= \sqrt{n} \int (\tilde{\psi} - \hat{\psi})(f_{0|k} - f_0) + G_n(\tilde{\psi} - \hat{\psi}) + o(1).
\end{align*}
It is thus natural to ask for, and this is satisfied in most examples, see below,
\begin{align*}
\max_{k \in \mathcal{K}_n} \| \tilde{\psi}_k \|_L^2 - \| \hat{\psi} \|_L^2 = o_p(1) \quad \text{and} \quad \max_{k \in \mathcal{K}_n} G_n(\tilde{\psi}_k - \hat{\psi}) = o_p(1). \tag{4.10}
\end{align*}
This leads to the next Proposition, proved in Section 6.

Proposition 1. Let f_0 belong to F_0 and the prior Π be defined by (4.5)-(4.9). Let the prior π_k be either the Dirac mass at $k = K_n \leq n/(\log n)^2$, or the law given in (4.6). Let \mathcal{K}_n be a subset of $\{1, 2, \ldots, n/(\log^2 n) \}$ such that $\Pi(\mathcal{K}_n | Y^n) = 1 + o_p(1)$.

Consider estimating a functional $\psi(f)$, with $\hat{\psi}$ in (4.2), verifying (4.10) and, for any $M > 0$, with $A_{n,k}(M)$ defined in (4.8),
\begin{align*}
\sup_{k \in \mathcal{K}_n} \sup_{f \in A_{n,k}(M)} \sqrt{n} \hat{e}(f, f_0) = o_p(1), \tag{4.11}
\end{align*}
as $n \to \infty$. Additionally, suppose
\begin{align*}
\max_{k \in \mathcal{K}_n} \sqrt{n} \left| \int (\tilde{\psi} - \hat{\psi}_k)(f_{0|k} - f_0) \right| = o(1). \tag{4.12}
\end{align*}
Then the BeM theorem for the functional ψ holds.

The core condition is (4.12), which can be seen as a no-bias condition. Condition (4.11) controls the remainder term of the expansion of $\psi(f)$ around f_0. Condition (4.10) is satisfied under very mild conditions: for its first part it is enough that $\inf \mathcal{K}_n$ goes to ∞ with n. For the second part, barely more than this typically suffices, using a simple empirical process argument, see Section 6.

The next Theorem investigates the previous conditions under deterministic and random priors on k, for the examples of functionals 4.1 to 4.4.
Theorem 4.2. Suppose $f_0 \in C^\beta$, with $\beta > 0$. Let two priors Π_1, Π_2 be defined by (4.5)-(4.9) and the prior on k be either the Dirac mass at $k = K_n = [n^{1/2}(\log n)^{-2}]$ for Π_1, or $k \sim \pi_k$ given by (4.6) for Π_2. Then

- Example 4.1, linear functionals $\psi(f) = \int af$, under the prior Π_1 with deterministic $k = K_n$
 - if $a(\cdot) \in C^\gamma$ with $\gamma + \beta > 1$ for some $\gamma > 0$, then the BvM theorem holds for the functional $\psi(f)$.
 - if $a(\cdot) = 1_{[\ell, \ell + 1]}$ for $z \in [0,1]$, then BvM holds for the functional $\int 1_{[\ell, \ell + 1]} f = F(z)$, the cumulative distribution function of f.

- Examples 4.2-4.3-4.4. For all $\beta > 1/2$, the BvM theorem holds for $\psi(f)$ for both priors Π_1 (deterministic k) and Π_2 (random k).

Theorem 4.2 is proved in Section 6.3. From this proof it may be noted that different choices of K_n in some range lead to similar results for some examples. For instance, if $\psi(f) = \int \psi f$ and $\psi \in C^\gamma$, choosing $K_n = [n/(\log n)^2]$ implies that the BvM holds for all $\gamma + \beta > 1/2$.

Obtaining BvM in the case of a prior with random k in Example 4.1 is case-dependent. The answer lies in the respective approximation properties of both f_0 and \hat{f}_0 through the prior (note that a random k prior typically adapts to the regularity of f_0), and the no-bias condition (4.12) may not be satisfied if $\inf K_n$ is not large enough.

We present below a counterexample where BvM is proved to fail for a large class of true densities f_0 when a prior with random k is chosen.

4.3 A semiparametric curse of adaptation: a counterexample for BvM under random number of bins histogram priors

Consider a C^1, strictly increasing true function f_0, say

$$f_0' \geq \rho > 0 \quad \text{on} \ [0,1]. \quad (4.13)$$

The following reasoning can be extended to any approximately monotone smooth function on $[0,1]$. Consider estimation of the linear functional $\psi(f) = \int \psi f$. The BvM theorem is not satisfied if the bias term $\sqrt{n}(\hat{\psi} - \psi_k)$ is predominant for all k’s which are asymptotically given mass under the posterior. This will happen if for all such k’s,

$$-b_{n,k} = \sqrt{n} \int (\psi(f) - f_0(k)) = \sqrt{n} \int (\hat{\psi}(\hat{f}) - \psi_k)(f_0 - f_0(k)) \gg 1,$$

as $n \to \infty$. To simplify the presentation we restrict ourselves to the case of dyadic random histograms, in other words the prior on k only puts mass on values of $k = 2^p$, $p \geq 0$. Then define $\psi(x)$ as, for $\alpha > 0$,

$$\psi(x) = \sum_{l \geq 0} \sum_{j=0}^{2^l-1} 2^{-l(1+\alpha)} \psi_{lj}^H(x), \quad (4.14)$$

where $\psi_{lj}^H(x) = 2^{l/2}\psi_{0j}(2^l x - j)$ and $\psi_{00}(x) = -\mathbb{1}_{[0,1/2]}(x) + \mathbb{1}_{[1/2,1]}(x)$ is the mother wavelet of the Haar basis (we omit the scaling function 1 in the definition of ψ).

Proposition 2. Let f_0 be any function as in (4.13) and α, ψ as in (4.14). Let the prior be as in Theorem 4.2. Then there exists $k_1 > 0$ such that

$$\Pi \left(k < k_1(n/\log n)^{1/3} | Y_n \right) = 1 + o_P(1)$$

and for all $p \in \mathbb{N}$ such that $2^p := K < k_1(n/\log n)^{1/3}$, the conditional posterior distribution of $\sqrt{n}(\hat{\psi}(f) - \psi - b_{n,k})/\sqrt{K_k} | k = K$ converges in distribution to $N(0,1)$, in P_0^θ-probability, with

$$b_{n,k} \ll -\sqrt{n}K^{-\alpha-1}.$$

In particular, the BvM property does not hold if $\alpha < 1/2$.

13
Remark 4. For the considered f_0 it can be checked that the posterior even concentrates on values of k such that $k = k_n \asymp (n/\log n)^{1/3}$.

As soon as the regularities of the functional $\psi(f)$ to be estimated and of the true function f_0 are fairly different, taking an adaptive prior (with respect to f) can have disastrous effects with a non-negligible bias appearing in the centering of the posterior distribution. As in the counterexample in Rivoirard and Rousseau [40], the BvM is ruled out because the posterior distribution concentrates on values of k that are too small and for which the bias $b_{n,k}$ is not negligible. Note that for each of these functionals the BvM is violated for a large class of true densities f_0. Some related phenomena in terms of rates are discussed in Knapik et al. [34] for linear functionals and adaptive priors in white noise inverse problems.

Let us sketch the proof of Proposition 2. It is not difficult to show that (see the Appendix), since $f_0 \in \mathcal{C}^1$, the posterior concentrates on the set \{ $f : \|f - f_0\|_1 \leq M(n/\log n)^{-1/3}$, $k \leq k_1(n/\log n)^{1/3}$ \}, for some positive M and k_1. Since Haar wavelets are special cases of (dyadic) histograms, for any $K \geq 1$ the best approximation of ψ within \mathcal{H}_K is

$$
\psi|_K(x) = \sum_{l=0}^{2^l-1} \sum_{j=0}^{2^l-1} 2^{-(l+\alpha)} \psi_l^H(x).
$$

The semiparametric bias $-b_{n,K}$ is equal to $\sqrt{n} \int_0^1 (f_0 - f_0|_K)(\psi - \psi|_K) = \sqrt{n} \int_0^1 f_0(\psi - \psi|_K)$, which can be written, for any $K \geq 1$,

$$
-b_{n,K} = \sqrt{n} \sum_{l > p} \sum_{j = 0}^{2^l - 1} 2^{-l(\frac{1}{2} + \alpha)} \int_0^1 f_0(x) \psi_l^H(x) dx
$$

$$
= \sqrt{n} \sum_{l > p} \sum_{j = 0}^{2^l - 1} 2^{-l\alpha} \int_{2^{-ij}} f_0(x + 2^{-l}/2) - f_0(x) dx
$$

$$
\geq \sqrt{n} \sum_{l > p} 2^{-l\alpha} 2^{1-2l} \geq \sqrt{n} K^{-\alpha - 1}.
$$

Since $\Pi(k \leq n^{1/3} | Y^n) = 1 + o_p(1)$, we have that $\inf_{k \leq n^{1/3}} -b_{n,k} \to +\infty$ for all $\alpha < 1/2$. Also, the sequence of real numbers $\{V_k\}_{k \geq 1}$ stays bounded, while the supremum $\sup_{1 \leq k \leq n^{1/3}} |\mathbb{G}_n(\tilde{\psi} - \tilde{\psi}|_K)|$ is bounded by a constant times $(\log n)^{1/2}$ in probability, by a standard empirical process argument. This implies that

$$
E^\Pi \left[e^{\sqrt{n}(\psi(f) - \psi)} | Y^n, \mathcal{A}_n \right] = (1 + o(1)) \sum_{k \in \mathcal{K}_n} e^{2V_k/2 + \sqrt{n}(\tilde{\psi} - \tilde{\psi})_k} \Pi[k | Y^n] = o_p(1),
$$

so that the posterior distribution is not asymptotically equivalent to $\mathcal{N}(0, \|\psi\|^2_2)$, and there exists M_n going to infinity such that

$$
\Pi|\sqrt{n}(\psi(f) - \psi) > M_n | Y^n = 1 + o_p(1).
$$

4.4 Gaussian process priors

We now investigate the implications of Theorem 4.1 in the case of Gaussian process priors for the density f. Consider as a prior on f the distribution on densities generated by

$$
f(x) = \frac{e^{W(x)}}{\int_0^1 e^{W(x)} dx},
$$

where W is a zero-mean Gaussian process indexed by $[0, 1]$ with continuous sample paths. The process W can also be viewed as a random element in the Banach space \mathcal{B} of continuous functions.
on $[0, 1]$ equipped with the sup-norm $\| \cdot \|_\infty$, see [44] for precise definitions. We refer to [44], [43] and [11] for basic definitions on Gaussian priors and some convergence properties respectively. Let $K(x, y) = E[W(x)W(y)]$ denote the covariance kernel of the process and let $(\mathbb{H}, \| \cdot \|_\mathbb{H})$ denote the reproducing kernel Hilbert space of W.

Example 4.5 (Brownian motion released at 0). Consider the distribution induced by

$$W(x) = N + B_x, \quad x \in [0, 1],$$

where B_x is standard Brownian motion and N is an independent $\mathcal{N}(0, 1)$ variable. We use it as a prior on w. It can be seen, see [43], as a random element in the Banach space $\mathbb{B} = (\mathcal{C}^0, \| \cdot \|_\infty)$ and its RKHS is

$$\mathbb{H}^B = \left\{ c + \int_0^1 g(u) du, \quad c \in \mathbb{R}, g \in L^2[0, 1] \right\},$$

a Hilbert space with norm given by $\| c + \int_0^1 g(u) du \|^2_{\mathbb{H}^B} = c^2 + \int_0^1 g(u)^2 du$.

Example 4.6 (Riemann-Liouville type processes). Consider the distribution induced by, for $\alpha > 0$ and $x \in [0, 1]$,

$$W^\alpha(x) = \sum_{k=0}^{[\alpha]+1} Z_k x^k + \int_0^x (x-s)^{\alpha-1/2} dB_s,$$

where Z_ks are independent standard normal variables and B is an independent Brownian motion. The RKHS \mathbb{H}^α of W^α can be obtained explicitly from the one of Brownian motion, and is nothing but a Sobolev space of order $\alpha + 1$, see [43], Theorem 4.1.

The concentration function of the Gaussian process in \mathbb{B} at $\eta_0 = \log f_0$ is defined for any $\varepsilon > 0$ by, see [44],

$$\varphi_{\eta_0}(\varepsilon) = \log \Pi(\| W \|_\infty \leq \varepsilon) + \frac{1}{2} \inf_{h \in \mathbb{H}}: \| h - h_0 \|_\mathbb{H} < \varepsilon \| h \|^2_{\mathbb{H}}.$$

In van der Vaart and van Zanten [43], it is shown that the posterior contraction rate for such a prior is closely connected to a solution ε_n of

$$\varphi_{\eta_0}(\varepsilon_n) \leq n \varepsilon_n^2, \quad \eta_0 = \log f_0. \quad (4.16)$$

Proposition 3. Suppose f_0 verifies $c_0 \leq f_0 \leq C_0$ on $[0, 1]$, for some positive c_0, C_0. Let the prior Π on f be induced via a Gaussian process W as in (4.15) and let \mathbb{H} denote its RKHS. Let $\varepsilon_n \to 0$ verify (4.16). Consider estimating a functional $\psi(f)$, with \tilde{r} in (4.2) verifying

$$\sup_{f \in A_n} \tilde{r}(f; f_0) = o(1/\sqrt{n}),$$

for A_n such that $\Pi(A_n \mid Y^n) = 1 + o_p(1)$ and $A_n \subset \{ f : h(f, f_0) \leq \varepsilon_n \}$. Suppose that ψ_{f_0} is continuous and that there exists a sequence $\psi_n \in \mathbb{H}$ and $\zeta_n \to 0$, such that

$$\| \psi_n - \hat{\psi}_{f_0} \|_\infty \leq \zeta_n, \quad \| \psi_n \|_{\mathbb{H}} \leq \sqrt{n} \zeta_n, \quad (4.17)$$

$$\sqrt{n} \varepsilon_n \zeta_n \to 0. \quad (4.18)$$

Then, for $\hat{\psi}$ any linear efficient estimator of $\psi(f)$, in P_0^n-probability, the posterior distribution of $\sqrt{n}(\psi(f) - \hat{\psi})$ converges to a Gaussian distribution with mean 0 and variance $\| \hat{\psi}_{f_0} \|^2_\mathbb{H}$ and the BoM theorem holds.

The proof is presented in Section 3.2 of the supplement [18]. We now investigate conditions (4.17)-(4.18) for examples of Gaussian priors.
Theorem 4.3. Suppose that \(\eta_0 = \log f_0 \) belongs to \(\mathcal{C}^\beta \), for some \(\beta > 0 \). Let \(\Pi_\alpha \) be the priors defined from a Gaussian process \(W \) via (4.15). For \(\Pi_1 \), we take \(W \) to be Brownian motion (released at 0) and for \(\Pi_2 \) we take \(W = W^\alpha \), a Riemann-Liouville-type process of parameter \(\alpha > 0 \).

- Example 4.1. Linear functionals \(\psi(f) = \int a f \)
 - If \(a(\cdot) \in \mathbb{H}^B \), then the BvM theorem holds for the functional \(\psi(f) \) and prior \(\Pi_1 \). The same holds if \(a(\cdot) \in \mathbb{H}^\alpha \) for prior \(\Pi_2 \).
 - If \(a(\cdot) \in \mathcal{C}_e^\alpha, \mu > 0 \), the BvM property holds for prior \(\Pi_2 \) if
 \[
 \alpha \land \beta > \frac{1}{2} + (\alpha - \mu) \lor 0.
 \]

- Examples 4.3-4.4. Under the same condition as for the linear functional with \(\mu = \beta \), the BeM theorem holds for \(\Pi_2 \).

An immediate illustration of Theorem 4.3 is as follows. Consider prior \(\Pi_1 \) built from Brownian motion. Then for all linear functionals
\[
\psi(f) = \int_0^1 x^r f(x) dx, \quad r > \frac{1}{2},
\]
the BvM theorem holds. Indeed, \(x \to x^r, r > 1/2 \) belongs to \(\mathbb{H}^B \).

To prove Theorem 4.3, one applies Proposition 3: it is enough to compute bounds for \(\varepsilon_n \) and \(\zeta_n \). This follows from the results on the concentration function for Riemann-Liouville-type processes obtained in Theorem 4 in [11]. For linear functionals \(\psi(f) = \int a f \) and \(a \in \mathcal{C}_e^\alpha \), one can take \(\varepsilon_n = n^{-\alpha \land \beta/(2\alpha + 1)} \) and \(\zeta_n = n^{-\mu/(2\alpha + 1)} \), up to some logarithmic factors. So (4.18) holds if \(\alpha \land \beta > \frac{1}{2} + (\alpha - \mu) \lor 0 \).

The square-root functional is similar to a linear functional with \(\mu = \beta \), since the remainder term in the expansion of the functional is of the order of the Hellinger distance. Indeed, since \(f_0 \) is bounded away from 0 and \(\infty \), the fact that \(u_0 \in \mathcal{C}^3 \) implies that \(f_0 \in \mathcal{C}^3 \) and \(\sqrt{f_0} \in \mathcal{C}^3 \). For power functionals, the remainder term \(r(f, f_0) \) is more complicated but is easily bounded by a linear combination of terms of the type
\[
\int (f - f_0)^{2 + r} f_0^{-2 - r} \leq \|f_0\|_\infty^{r - 2} \|f - f_0\|_\infty \int (f - f_0)^2.
\]
Using Proposition 1 in the supplement [18], one obtains that, under the posterior distribution, \(\|f - f_0\|_\infty \lesssim 1 \) and \(\|f - f_0\|_2 \lesssim \varepsilon_n \). So, \(\sqrt{\varepsilon_n} \|f, f_0\) = \(o(1) \) holds if \(\sqrt{\varepsilon_n} = \nabla (\cdot) \), which is the case since \(\alpha \land \beta > 1/2 \).

5 Application to the nonlinear autoregressive model

Consider an autoregressive model in which one observes \(Y_1, \ldots, Y_n \) given by
\[
Y_{i+1} = f(Y_i) + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, 1) \quad \text{i.i.d.}
\]
where \(\|f\|_\infty \leq L \) for a fixed given positive constant \(L \) and \(f \) belongs to a Hölder space \(\mathcal{C}^\beta, \beta > 0 \). This example has been in particular studied by [29] and it is known that \((Y_i, i = 1, \ldots, n) \) is an homogeneous Markov chain and that under these assumptions, for all \(f \), there exists a unique stationary distribution \(Q_f \) with density \(q_f \) with respect to Lebesgue measure. The transition density is \(p_f(y|x) = \phi(y - f(x)) \). Denoting \(r(y) = (\phi(y - L) + \phi(y + L))/2 \), the transition density satisfies \(p_f(y|x) \propto r(y) \) for all \(x, y \in \mathbb{R} \). Following [29], define the norms, for any \(s \geq 2 \),
\[
\|f - f_0\|_{s, r} = \left(\int_\mathbb{R} |f(x) - f_0(x)|^s r(x) dx \right)^{1/s}
\]
As in [29], we consider a prior II on f based on piecewise constant functions. Let us set $a_n = b \sqrt{n \log n}$, where $b > 0$ and consider functions f of the form

$$f(x) := f_{\omega,k}(x) = \sum_{j=0}^{k-1} \omega_j I_j(x), \quad I_j = a_n([j/k, (j+1)/k] - 1/2).$$

A prior on k and on $\omega = (\omega_0, \ldots, \omega_{k-1})$ is then specified as follows. First draw $k \sim \pi_k$, for π_k a law on the integers. Given k, the law $\omega | k$ is supposed to have a Lebesgue density $\pi_{\omega | k}$ with support $[-M, M]^k$ for some $M > 0$. Assume further that these laws satisfy, for $0 < c_2 \leq c_1 < \infty$ and $C_1, C_2 > 0$,

$$e^{-c_1 K \log K} \leq \pi_k[k > K] \leq e^{-c_2 K \log K}, \quad \text{for large } K$$

$$e^{-C_2 k \log k} \leq \pi_{\omega | k}(\omega) \leq C_1, \quad \forall \omega \in [-M, M]^k.$$ (5.2)

We consider the squared-weighted-L_2 norm functional $\psi(f) = \int_R f^2(y)q_f(y)dy$. As before define

$$k_n(\beta) = \lfloor (n / \log n)^{1/(2\beta+1)} \rfloor, \quad \varepsilon_n(\beta) = (n / \log n)^{-\beta/(2\beta+1)}.$$

For all bounded f_0 and all $k > 0$, define

$$\hat{\omega}_{[k]}^0 = (\hat{\omega}_1^0, \ldots, \hat{\omega}_k^0), \quad \hat{\omega}_{[j]}^0 = \frac{\int_{I_j} f_0(x)q_{f_0}(x)dx}{\int_{I_j} q_{f_0}(x)dx};$$

these are the weights of the projection of f_0 on the weighted space $L^2(q_{f_0})$. We then have the following sufficient condition for the BvM to be valid.

Theorem 5.1. Consider the autoregressive model (5.1) and the prior (5.2). Assume that $f_0 \in C^\beta$, with $\beta > 1/2$ and $\|f_0\|_\infty < L$, and assume that $\pi_{\omega | k}$ satisfies for all $t > 0$ and all $M_0 > 0$

$$\sup_{\|\omega - \omega_0\|_{2,r} \leq M_0 \varepsilon_n(\beta)} \left| \frac{\pi_{\omega | k}(\omega - t\hat{\omega}_{[k]}^0) / \sqrt{n}}{\pi_{\omega | k}(\omega)} - 1 \right| = o(1).$$ (5.3)

Then the posterior distribution of $\sqrt{n}(\psi(f) - \hat{\psi})$ is asymptotically Gaussian with mean 0 and variance V_0, where

$$\hat{\psi} = \psi(f_0) + \frac{2}{n} \sum_{i=1}^n \epsilon_i f_0(Y_i-1) + o_p(n^{-1/2}), \quad V_0 = 4 \|f_0\|_{2,q_{f_0}}^2$$

and the BvM is valid under the distribution associated to f_0 and any initial distribution ν on \mathbb{R}.

Theorem 5.1 is proved in Section 4 of the supplement [18]. The conditions on the prior (5.2) and (5.3) are satisfied in particular when $k \sim \mathcal{P}(\lambda)$ and when given k, the law $\omega | k$ is the independent product of k laws $\mathcal{U}(-M, M)$. Theorem 5.1 is an application of the general theorem 2.1, with $A_n = \{f_{\omega,k}; k \leq k_n(\beta); \|\omega - \omega_{[k]}^0\|_{2,r} \leq M_0 \varepsilon_n(\beta)\}$ and assumption A implied by $\beta > 1/2$. Condition (5.3) is used to prove condition (2.13).

6 Proofs

6.1 Proof of Theorem 2.1

Let the set A_n be as in assumption A. Set

$$I_n := E \left[e^{\sqrt{n}(\psi(n) - \psi(0))} \mid Y^n, A_n \right].$$
For the sake of conciseness we prove the result in the case where $\psi_0^{(2)} \neq 0$ since the other case is a simpler version of it. Using the LAN expansion (2.3) together with the expansion (2.4) of the functional ψ, one can write

$$I_n = \int_{A_n} e^{\sqrt{n}L(\psi_0^{(1)}, \eta-\eta_0)_L + \frac{1}{2}(\psi_0^{(2)}(\eta-\eta_0), \eta-\eta_0)_L} + \ell_n(\eta) - \ell_n(\eta_0) + \epsilon(\eta, \eta_0) + oP(\eta) \, d\Pi(\eta)$$

Consider, for any real number t, as defined in (2.11),

$$\eta_t = \eta - \frac{t\psi_0^{(1)}(\eta_0)}{\sqrt{n}} - \frac{t}{2\sqrt{n}} \psi_0^{(2)}(\eta - \eta_0) - \frac{t\psi_0^{(2)}(w_n)}{2n}.$$

Then using (2.9)-(2.10) in assumption A, on A_n,

$$\ell_n(\eta_t) - \ell_n(\eta_0) - (\ell_n(\eta) - \ell_n(\eta_0) + oP(1))$$

$$= -\frac{n}{2} \left[||\eta_t - \eta_0||_L^2 - ||\eta - \eta_0||_L^2 \right] + \sqrt{n}(w_n, \eta_t - \eta)_L + R_n(\eta_t, \eta_0) - R_n(\eta, \eta_0) + oP(1)$$

$$= -t \langle w_n, \psi_0^{(1)} + \psi_0^{(2)}w_n/(2\sqrt{n}) \rangle - \frac{t^2}{2} \left\| \psi_0^{(1)} + \psi_0^{(2)}w_n/(2\sqrt{n}) \right\|^2_L + \sqrt{n}t(\psi_0^{(1)}, \eta - \eta_0)_L$$

$$+ \frac{t^2}{2} \langle \psi_0^{(2)}(\eta - \eta_0), \eta - \eta_0 \rangle + R_n(\eta, \eta_0) - R_n(\eta, \eta_0) + oP(1).$$

One deduces that on A_n, from (2.12) in assumption A,

$$\sqrt{n}t \left(\psi_0^{(1)}, \eta - \eta_0 \right)_L + \frac{1}{2} \left(\psi_0^{(2)}(\eta - \eta_0), \eta - \eta_0 \right)_L + \ell_n(\eta) - \ell_n(\eta_0) + \sqrt{n}t(\eta, \eta_0)$$

$$= \ell_n(\eta_t) - \ell_n(\eta_0) + t \langle w_n, \psi_0^{(1)} + \psi_0^{(2)}w_n/(2\sqrt{n}) \rangle + \frac{t^2}{2} \left\| \psi_0^{(1)} + \psi_0^{(2)}w_n/(2\sqrt{n}) \right\|^2_L + oP(1).$$

We can then rewrite I_n as

$$I_n = oP(1) + \frac{t^2}{2} \left\| \psi_0^{(1)} + \psi_0^{(2)}w_n/(2\sqrt{n}) \right\|^2_L + t \langle w_n, \psi_0^{(1)} + \psi_0^{(2)}w_n/(2\sqrt{n}) \rangle \int_{A_n} e^{\sqrt{n}L(\eta) - \ell_n(\eta_0)} d\Pi(\eta)$$

and Theorem 2.1 is proved using condition (2.14), together with the fact that, see Section 1 of the supplement [18], convergence of Laplace transforms for all t in probability implies convergence in distribution in probability. \(\square\)

6.2 Proof of Theorem 4.1

One can define $\psi_0^{(1)} = \tilde{\psi}_{f_0} + c$ for any constant c, since the inner product associated to the LAN norm corresponds to re-centered quantities. In particular for all $\eta = \log f$

$$\langle (\tilde{\psi}_{f_0} + c), \eta - \eta_0 \rangle_L = \int (\tilde{\psi}_{f_0} - P_{f_0}\tilde{\psi}_{f_0})(\eta - \eta_0)f_0, \quad \|\tilde{\psi}_{f_0} + c\|_L = \|\tilde{\psi}_{f_0}\|_L.$$

To check assumption A, let us write

$$\psi_0^{(1)} = \tilde{\psi}_{f_0} + \sqrt{n}t \log \left(\int_0^1 e^{\eta - t/\sqrt{n} \tilde{\psi}_{f_0}(x)}dx \right),$$

which depends on η but is of the form $\tilde{\psi}_{f_0} + c$, see also Remark 2, and we study $\sqrt{n}t(\eta, \eta_0) + R_n(\eta, \eta_0) - R_n(\eta, \eta_0)$ using [40]'s calculations pages 1504-1505. Indeed writing $h = \sqrt{n}(\eta - \eta_0)$ we have

$$R_n(\eta, \eta_0) = t(h, \tilde{\psi}_{f_0})_L - \frac{t^2}{2} \|\tilde{\psi}_{f_0}\|^2_L + n \log F[e^{-\tilde{\psi}_{f_0}/\sqrt{n}}]$$
and expanding the last term as in page 1506 of [40] we obtain that
\[
n \log F[e^{-\hat{\psi}_{f_0}/\sqrt{n}}] = n \log \left(1 - \frac{t}{n} \langle h, \hat{\psi}_{f_0} \rangle_L - \frac{t}{\sqrt{n}} \mathcal{B}(f, f_0) + \frac{t^2}{2n} \|\hat{\psi}_{f_0}\|_L^2 \right.
\]
\[+ \frac{t^2}{2n} (F - F_0)(\hat{\psi}_{f_0}^2) + O(n^{-3/2}) \right)
\]
\[= -t\langle h, \hat{\psi}_{f_0} \rangle_L - t\sqrt{n} \mathcal{B}(f, f_0) + \frac{t^2}{2} \|\hat{\psi}_{f_0}\|_L^2 + O(\|f - f_0\|_1 + n^{-1/2})
\]
\[= -t\langle h, \hat{\psi}_{f_0} \rangle_L - t\sqrt{n} \mathcal{B}(f, f_0) + \frac{t^2}{2} \|\hat{\psi}_{f_0}\|_L^2 + o(1)
\]
since \(|(F - F_0)(\hat{\psi}_{f_0}^2)| \leq \|\hat{\psi}_{f_0}\|_\infty \|f - f_0\|_1 \lesssim \epsilon_n\) on \(A_n\). Finally this implies that \(\sqrt{n} \text{tr}(\eta, \eta_0) + R_n(\eta, \eta_0) - R_n(\eta_0, \eta_0) = o(1)\) uniformly over \(A_n\) and assumption A is satisfied.

6.3 Proof of Theorem 4.2

The first part of the proof consists in establishing that the posterior distribution on random histograms concentrates a) given the number of bins \(k\), around the projection \(f_0, |k|\) of \(f_0\) and b) globally around \(f_0\) in terms of the Hellinger distance.

More precisely a) there exist \(c, M > 0\) such that
\[
P_0 \left[\exists k \leq \frac{n}{\log n} : \Pi [f \notin A_n, k(M) \mid Y^n, k] > e^{-ck \log n} \right] = o(1). \tag{6.2}
\]
b) Suppose \(f_0 \in C^\beta\) with \(0 < \beta \leq 1\). If \(k_n(\beta) = (n/\log n)^{1/(2\beta + 1)}\) and \(\epsilon_n(\beta) = k_n(\beta)^{-\beta}\), then for \(k_1, M\) large enough,
\[
\Pi [h(f_0, f) \leq M\epsilon_n(\beta); \ k \leq k_1k_n(\beta) \mid Y^n] = 1 + o_p(1). \tag{6.3}
\]
Both results are new. As a)-b) are an intermediate step and concern rates rather than BvM per se, their proofs are given in the Supplement [18].

We now prove that the BvM holds if there exists \(K_n\) such that \(\Pi(K_n | Y^n) = 1 + o_p(1)\), and for which
\[
\sup_{k \in K_n} \sqrt{n} \dot{\psi} - \dot{\psi}_k = o_p(1), \quad \sup_{k \in K_n} |V_k - V| = o_p(1), \tag{6.4}
\]
for all \(\psi(f)\) satisfying (4.2) with
\[
\sup_{k \in K_n} \sup_{f \in A_{n, k}(M)} \tilde{r}(f; f_0) = o_p(1). \tag{6.5}
\]
Consider first the deterministic \(k = K_n\) number of bins case. The study of the posterior distribution of \(\sqrt{n} \psi(f) - \dot{\psi}\) is based on a slight modification of the proof of Theorem 4.1. Instead of taking the true \(f_0\) as basis point for the LAN expansion, we take instead \(f_{0, |k|}\). This enables to write the main terms in the LAN expansion completely within \(H_k\).

Let us define \(\dot{\psi}_{(k)} := \psi_{[k]} - \int \psi_{[k]} f_{0, |k|} = \psi_{[k]} - \int \psi_{[k]} f_{0, |k|}\) and \(\dot{\psi}_k = \psi(f_{0, |k|}) + \sqrt{n} W_n(\dot{\psi}_{(k)})\).

With the same notation as in Section 4, where indexation by \(k\) means that \(f_0\) is replaced by \(f_{0, |k|}\) (in \(\| \cdot \|_{L,k}, R_{n,k}\) etc.), where one can note that for \(g \in H_k\), one has \(W_{n,k}(g) = W_n(g)\),
\[
t \sqrt{n} \psi(f) - \dot{\psi}_k + \ell_n(f) - \ell_n(f_{0, |k|})
\]
\[= -\frac{n}{2} \log \frac{f}{f_{0, |k|}} - \frac{t}{\sqrt{n}} \|\dot{\psi}_{(k)}\|_{L,k}^2 + \sqrt{n} W_n(\log \frac{f}{f_{0, |k|}}) - \frac{t}{\sqrt{n}} \|\dot{\psi}_{(k)}\|_{L,k}^2 + \frac{t^2}{2} \|\dot{\psi}_{(k)}\|_{L,k}^2 + \sqrt{n} B_{n,k} + R_{n,k}(f, f_{0, |k|}).
\]

19
Let us set $f_{t,k} = f e^{-t\hat{\psi}(k)/\sqrt{n}} / F(e^{-t\hat{\psi}(k)})$. Then, using the same arguments as in Section 4, together with (C.2) and the fact that $\int \hat{\psi}(k) f_{t,k} = 0$, we have
\[
 t\sqrt{n}(\hat{\psi}(f) - \hat{\psi}(k)) + \ell_n(f) - \ell_n(f_{0,[k]}) = \frac{t^2}{2} \|\hat{\psi}(k)\|_L^2 + \ell_n(f_{t,k}) - \ell_n(f_{0,[k]}) + o(1),
\]
so that choosing $A_{n,k} = \{ \omega \in S_k; \|f_{\omega,k} - f_{0,[k]}\|_1 \leq M\sqrt{k \log n}\}$, we have
\[
 E^\Pi \left[e^{t\sqrt{n}(\hat{\psi}(f) - \hat{\psi}(k))} | Y^n, A_{n,k} \right] = e^{\frac{t^2}{2} \|\hat{\psi}(k)\|_L^2 + o(1)} \times \frac{\int_{A_{n,k}} e^{\ell_n(f_{t,k}) - \ell_n(f_{0,[k]})} d\Pi_k(f)}{\int_{A_{n,k}} e^{\ell_n(f_{t,k}) - \ell_n(f_{0,[k]})} d\Pi_k(f)},
\]
uniformly over $k = o(n/\log n)$. Within each model \mathcal{H}_k, since $f = f_{\omega,k}$, we can express $f_{t,k} = k \sum_{j=1}^k \zeta_j \Pi_j$, with
\[
 \zeta_j = \frac{\omega_j \gamma_j^{-1}}{\sum_{j=1}^k \omega_j \gamma_j^{-1}},
\]
where we have set, for $1 \leq j \leq k$, $\gamma_j = e^{\psi_j}/\sqrt{n}$, and $\psi_j := k \int_{f_{j}} \hat{\psi}(k)$. Denote $S_{\gamma^{-1}}(\omega) = \sum_{j=1}^k \omega_j \gamma_j^{-1}$. Note that (6.6) implies $S_{\gamma^{-1}}(\omega) = S_{\gamma}(\zeta)^{-1}$. So,
\[
 \frac{\Pi_k(\omega)}{\Pi_k(\zeta)} = \prod_{j=1}^k e^{t(\alpha_{j,k}-1)\psi_j/\sqrt{n}} S_{\gamma}(\zeta)^{-\sum_{j=1}^k (\alpha_{j,k}-1)},
\]
Let Δ be the Jacobian of the change of variable computed in Lemma 5 of the supplement [18]. Over the set $A_{n,k}$, it holds
\[
 d\Pi_k(\omega) = \prod_{j=1}^k e^{t(\alpha_{j,k}-1)\psi_j/\sqrt{n}} S_{\gamma}(\zeta)^{-\sum_{j=1}^k (\alpha_{j,k}-1)} \Delta(\zeta) d\Pi_k(\zeta)
 = S_{\gamma}(\zeta)^{-\sum_{j=1}^k \alpha_{j,k}} e^{t \sum_{j=1}^k \alpha_{j,k} \psi_j/\sqrt{n}} d\Pi_k(\zeta)
 = e^{t \sum_{j=1}^k \alpha_{j,k} \psi_j/\sqrt{n}} \left(1 - \frac{t}{\sqrt{n}} \int_0^{1} \hat{\psi}(k)(f - f_0) + O(n^{-1}) \right)^{\sum_{j=1}^k \alpha_{j,k}} d\Pi_k(\zeta),
\]
where we have used that
\[
 S_{\gamma^{-1}}(\omega) = \int_0^{1} e^{-t\hat{\psi}(k)/\sqrt{n}} f = 1 - \frac{t}{\sqrt{n}} \int_0^{1} \hat{\psi}(k)(f - f_0) + O(n^{-1}).
\]
Moreover, if $|\omega - \omega^0|_1 \leq M\sqrt{k \log n}/\sqrt{n}$,
\[
 |\zeta - \omega^0|_1 \leq M\sqrt{k \log n}/\sqrt{n} + \frac{2|t|\|\hat{\psi}\|_\infty}{\sqrt{n}} \leq (M + 1) \frac{\sqrt{k \log n}}{\sqrt{n}}
\]
and vice versa. Hence choosing M large enough (independent of k) such that
\[
 \Pi \left[|\omega - \omega^0|_1 \leq (M + 1) \frac{\sqrt{k \log n}}{\sqrt{n}} | Y^n, k \right] = 1 + o_p(1)
\]
implies that if $\sum_{j=1}^k \alpha_j = o(\sqrt{n})$, noting $\|\hat{\psi}(k)\|_{L,k} = \|\hat{\psi}(k)\|_L$,
\[
 E^\Pi \left[e^{t\sqrt{n}(\psi(f) - \psi_k)} | Y^n, A_{n,k} \right] = e^{t^2\|\hat{\psi}(k)\|_L^2/2} (1 + o(1)).
\]
The last estimate is for the restricted distribution $\Pi[| Y^n, A_{n,k}]$, but (C.2) implies that the unrestricted version also follows. Since $\|\hat{\psi}\|_L^2$ is the efficiency bound for estimating $\hat{\psi}$ in the density model, (6.4) follows.
Now we turn to the random k case. The previous proof can be reproduced k by k, that is, one decomposes the posterior $\Pi[|Y^n, B_n]$, for $B_n = \bigcup_{1 \leq k \leq n} A_n, k \cap \{f = f_0, k \in K_n\}$, into the mixture of the laws $\Pi[|Y^n, B_n, k]$ with weights $\Pi[k | Y^n]$. Combining the assumption on K_n and (C.2) yields $\Pi[B_n | Y^n] = 1 + o_p(1)$. Now notice that in the present context (6.7) becomes
\[
E\Pi\left[e^{t\sqrt{n}(\psi(f) - \hat{\psi})} \right]_{Y^n, B_n, k} = E\Pi\left[e^{t\sqrt{n}(\psi(f) - \hat{\psi})} \right]_{Y^n, A_n, k, k}
= e^{t^2\|\hat{\psi}\|^2/2} (1 + o(1)),
\]
where it is important to note that the $o(1)$ is uniform in k. This follows from the fact that the proof in the deterministic case holds for any given k less than n and any dependence in k has been made explicit in that proof. Thus
\[
E\Pi\left[e^{t\sqrt{n}(\psi(f) - \hat{\psi})} \right]_{Y^n, B_n} = \sum_{k \in K_n} E\Pi\left[e^{t\sqrt{n}(\psi(f) - \hat{\psi})} \right]_{Y^n, A_n, k, k} \Pi[k | Y^n] = (1 + o(1)) \sum_{k \in K_n} e^{t^2V_k/2 + t\sqrt{n}(\psi_k - \hat{\psi})} \Pi[k | Y^n].
\]
Using (6.4) together with the continuous mapping theorem for the exponential function yields that the last display converges in probability to $e^{t^2V_k/2}$ as $n \to \infty$, which leads to the BvM theorem.

We apply this to the four examples. First, in the case of Example 4.1 with deterministic $k = K_n$, we have by definition that $\hat{\tau}(f, f_0) = 0$ and $\sqrt{n}(\hat{\psi}_n - \tilde{\psi}) = \hat{b}_{n, K_n} + o_p(1)$ with $\hat{b}_{n, K_n} = O(\sqrt{n}K_n^{-\beta - \gamma}) = o(1)$ if $\beta + \gamma > 1$, when $a \in C^\gamma$. On the other hand, if $a(x) = \|x\|_2$, for all $\beta > 0$
\[
|\hat{b}_{n, K_n}| \lesssim \sqrt{n} \int_{|K_n|/K_n} (f_0(x) - k\bar{w}_{|K_n|/2})dx = O(\sqrt{n}K_n^{-\beta + 1}) = o(1).
\]

We now verify (6.4) together with (6.5) for Examples 4.2, 4.3 and 4.4. We present the proof in the case Example 4.2, since the other two are treated similarly. Set, in the random k case
\[
K_n = \{k \in [1, k_1K_n(\beta)], \exists f \in H^{1}_K, h(f, f_0) \leq M\varepsilon_n(\beta)\},
\]
for some k_1, M large enough so that $\Pi[K_n | Y^n] = 1 + o_p(1)$ from (C.2), with $\varepsilon_n(\beta) = (n / \log n)^{-\beta/(2\beta + 1)}$. For $\beta > 1/2$, note that $k\varepsilon_n(\beta)^2 = o(1)$, uniformly over $k \lesssim k_1(\beta)$. In the deterministic case, simply set $K_n = \{K_n\}$.

First observe that for $k \in K_n$, the elements of the set $\{f \in H^{1}_K, h(f, f_0) \leq M\varepsilon_n(\beta)\}$ are bounded away from 0 and ∞. Indeed, since this is true for f_0, writing the Hellinger distance as a sum over the various bins leads to $\sqrt{n}(\psi(f) - \hat{\psi})$ which implies that $f(x) \geq c_0/2$ for n large enough, since $k\varepsilon_n(\beta)^2 = o(1)$. Similarly $\|f\|_\infty \leq 2\|f_0\|_\infty$ for n large. Now, by writing $\log(f/f_0) = 1 + (f - f_0)/f_0 + \rho(f - f_0)$, and using that f_0 is bounded away from 0 and ∞, one easily checks that $\tilde{\rho}(f, f_0)$ in Example 4.2 is bounded from above by a multiple of $f_0^2(f - f_0)^2$, which itself is controlled by $h(f, f_0)^2$ for f, f_0 as before. Also $\sqrt{n}\varepsilon_n^2 = o(1)$ when $\beta > 1/2$, which implies (6.5). It is easy to adapt the above computations to the case where $k = K_n = O(\sqrt{n}/(\log n)^2)$.

Next we check condition (6.4). Since $\tilde{\psi} = \log f_0 - \psi(f_0)$, under the deterministic k-prior with $k = K_n = [n^{1/2}(\log n)^{-2}]$ and $\beta > 1/2$,
\[
\left|\int_0^1 \tilde{\psi}(f_0 - f_0(k)) \right| \leq \left|\int_0^1 (\tilde{\psi} - \tilde{\psi}(k))f_0 - f_0(k) \right| \lesssim h^2(f_0, f_0(k)) = o(1/\sqrt{n}).
\]
In that case the posterior distribution of $\sqrt{n}(\psi(f) - \tilde{\psi})$ is asymptotically Gaussian with mean 0 and variance $\|\tilde{\psi}\|^2_2$, so the BvM theorem is valid.

Under the random k-prior, recall from the reasoning above that any f with $h(f, f_0) \leq M\varepsilon_n(\beta)$ is bounded from below and above, so the Hellinger and L^2-distances considered below are comparable. For a given $k \in K_n$, by definition there exists $f_k^* \in H^{1}_K$ with $h(f_0, f_k^*) \leq M\varepsilon_n(\beta)$, so using
(C.3),
\[h^2(f_0, f_{0|k}) \lesssim \int_0^1 (f_0 - f_{0|k})^2(x) \, dx \leq \int_0^1 (f_0 - f_k^*)^2(x) \, dx \lesssim h^2(f_0, f_k^*) \lesssim \varepsilon_n^2(\beta). \]
This implies, using the same bound as in the deterministic-k case,
\[F_0((\tilde{\psi}_k - \tilde{\psi})^2) \lesssim h(f_0, f_{0|k})^2 = O(\varepsilon_n^2(\beta)), \]
and that \[|F_0(\tilde{\psi}^2_k) - F_0(\tilde{\psi}^2)| = o(1), \] uniformly over \(k \in K_n \). To control the empirical process part of (6.4), that is the second part of (4.10), one uses e.g. Lemma 19.33 in [42], which provides an upper-bound for the maximum, together with the last display. So, for random \(k \), the BvM theorem is satisfied if \(\beta > 1/2 \).

References

A Appendix: Some weak convergence facts

We state some (certainly well-known) lemmas on weak convergence, in probability, of a sequence of random probability measures on the real line. Proofs are included for the sake of completeness.

Let β be a distance which metrises weak convergence of probability measures on \mathbb{R}, here for convenience taken to be the bounded Lipschitz metric (see e.g. Dudley [22], Chap. 11). Let P_n be a sequence of random probability measures on \mathbb{R}. We say that P_n converges weakly in \mathbb{P}_0-probability to a fixed measure P on \mathbb{R} if, as $n \to \infty$, one has $\beta(P_n, P) \to 0$ in \mathbb{P}_0-probability.

Lemma 1. Suppose that for any real t, the Laplace transform $\int e^{tx}dP(x)$ is finite, and that $\int e^{tx}dP_n(x) \to \int e^{tx}dP(x)$, in \mathbb{P}_0-probability. Then, for any continuous and bounded real function f, it holds $\int fdP_n \to \int fdP$, in \mathbb{P}_0-probability.

Lemma 2. Under the conditions of Lemma 1, it holds $\beta(P_n, P_0) \to 0$ in \mathbb{P}_0-probability. If P has no atoms, we also have, in \mathbb{P}_0-probability,

\[
\sup_{s \in \mathbb{R}} |P_n((-\infty, s]) - P((-\infty, s])| \to 0,
\]

Proof of Lemma 1. Let $L(t) := \int e^{tx}dP(x) = E_P[e^{tx}]$. For $M > 0$,

\[
P_n \cdot (X > M) \leq e^{-M} \cdot [E_{P_n} [e^{X_n}] + E_{P_n} [e^{-X_n}]]
\leq e^{-M} \cdot [L(1) + L(-1) + E_{P_n} [e^{X_n}] - L(1) + E_{P_n} [e^{-X_n}] - L(-1)].
\]

Let $\varepsilon > 0$ be fixed. Let $M > 0$ be such that $e^{-M}[L(1) + L(-1)] \leq \varepsilon / 2$. Then

\[
\mathbb{P}_0 (P_n \cdot (X > M) > \varepsilon) \leq \mathbb{P}_0 \left(|E_{P_n} [e^{X_n}] - L(1)| > \varepsilon / 4 \right)
+ \mathbb{P}_0 \left(|E_{P_n} [e^{-X_n}] - L(-1)| > \varepsilon / 4 \right) = o(1).
\]

Let f be a given continuous and bounded real function and write

\[
E_{P_n} [f(X) \mathbb{1}_{X \leq M}] = E_{P} [f(X) \mathbb{1}_{X \leq M}] + \left(E_{P_n} [f(X) \mathbb{1}_{X \leq M}] - E_{P} [f(X) \mathbb{1}_{X \leq M}] \right)
\]

Over the compact set $[-M, M]$, Stone-Weierstrass’ theorem, applied to the algebra of finite linear combinations of exponential functions of the form $x \to \sum_j \alpha_j e^{\varepsilon jx}$, shows that for any $\varepsilon > 0$ there exists $(N_{\varepsilon}, \alpha_j, t_j, j \leq N_{\varepsilon})$, such that

\[
\sup_{|x| \leq M} \left| f(x) - \sum_{j=1}^{N_{\varepsilon}} \alpha_j e^{\varepsilon jx} \right| < \varepsilon / 2.
\]

Therefore one obtains

\[
\left| E_{P_n} [f(X) \mathbb{1}_{X \leq M}] - E_{P} [f(X) \mathbb{1}_{X \leq M}] \right|
\leq \left(E_{P_n} + E_{P} \right) \left| \mathbb{1}_{X \leq M} \left(f(X) - \sum_{j=1}^{N_{\varepsilon}} \alpha_j e^{\varepsilon jX} \right) \right|
+ \sum_{j=1}^{N_{\varepsilon}} \alpha_j \left(E_{P_n} [e^{t_j X}] - E_{P_n} [e^{t_j X}] \right)
\leq \varepsilon / 2 + o_{P_0}(1).
\]

Thus $\int fd(P_n - P) = o_{P_0}(1)$, for any continuous and bounded function f.

Proof of Lemma 2. For the first part of the statement, let us reason by contradiction and suppose that $\beta(P_n, P_0) \nrightarrow 0$ in \mathbb{P}_0-probability. Let $\{\psi_m\}$ be a countable collection of elements in the space $BL(\mathbb{R})$ of bounded Lipschitz functions, dense in $BL(\mathbb{R})$ for the supremum norm (not for the BL-metric), see e.g. Dudley [22], proof of Proposition 11.4.1. By Lemma 1, $\int \psi_m dP_n$ converges to $\int \psi_m dP$ in probability for any m. Such convergence can be made into an almost sure one up
to subsequence extraction. By a diagonal argument, one then finds a subsequence \(\phi(n) \) such that
\[
\int \psi_m dP_{\phi(n)} \to \int \psi_m dP
\]
for any possible \(m \), almost surely. Let us now work on the event say \(\Omega_0 \) on which this happens. Let \(f \) be a given bounded-Lipschitz function on \(\mathbb{R} \). Let \(\varepsilon > 0 \) be arbitrary. There exists an index \(m \) such that \(\| f - \psi_m \|_\infty \leq \varepsilon \). Thus by the triangle inequality
\[
| \int f d(P - P_{\phi(n)}) | \leq 2\varepsilon + | \int \psi_m d(P - P_{\phi(n)}) |.
\]
The last term converges to 0 on the event \(\Omega_0 \). Since \(\varepsilon \) is arbitrary, this contradicts the fact that \(\beta(P_n, P_0) \to 0 \).

The second part of the statement follows from the fact that the collection \(\mathcal{A} = \{(-\infty, s], s \in \mathbb{R} \} \) forms a uniformity class for weak convergence. The ‘in-probability’ part of the convergence follows, again for instance by a reasoning by contradiction via extraction of a subsequence along which almost sure convergence holds, see also Castillo and Nickl [15] Section 4.2 for a similar argument and a detailed discussion on uniformity classes on separable metric spaces.

\(\square \)

B Appendix: White noise model

B.1 A Lemma

The following result is a slight adaptation of a result in Castillo and Nickl [15] and provides a contraction rate in \(L^2 \) for the posterior in the Gaussian white noise model for any prior of the form (3.1) in [17]. Let \(f_0 \in L^2[0, 1] \) and set
\[
\varepsilon_n^2 = \frac{K_n}{n} + \sum_{k > K_n} f_{0,k}^2.
\]

Lemma 3 \((L^2\)-result in Castillo and Nickl [15]) Consider the Gaussian white noise model with \(f_0 \in L^2[0, 1] \). Let \(\Pi \) be defined by (3.1) in [17] and \(\varepsilon_n \) be defined by (B.1). Suppose (3.2) in [17] holds, that \(\int_0^1 x^2 \varphi(x) dx < \infty \), and that there exist constants \(c_\varphi, C_\varphi \) such that \(\varphi(x) \leq C_\varphi \) for all real \(x \) and \(\varphi(x) \geq c_\varphi \) for all \(x \in (-\tau, \tau) \).

Then there exists \(C > 0 \) such that, as \(n \to \infty \),
\[
P_{f_0}^{(n)}(f : \| f - f_0 \|_2 \leq C\varepsilon_n | Y^n) \to 1.
\]

Remark 5. Lemma 3 still holds if \(\varphi \) depends on \(k, n \), as long as one can find \(C_\varphi, c_\varphi, \tau \) independent of \(k, n \) satisfying the conditions of the Lemma.

B.2 Proof of Theorem 3.1

For the considered functional recall that we have set \(\psi^{(1)}_0 = 2f_0 \) and \(\psi^{(2)}_0 = 2f \) for \(f \in \mathcal{H} = L^2 \). Also, \(r = 0 \) in (2.4) and (2.5) in [17] holds. Since \(\psi^{(2)}_0 \) is not the zero function, one needs to find a candidate for \(w_n \) in the case A2. Set \(w_{n,k} = \epsilon_k \) if \(1 \leq k \leq K_n \) and \(w_{n,k} = 0 \) otherwise. In particular, \(\Delta_n(h) = \sum_{k > K_n} h_k \epsilon_k \) for any \(h \) in \(L^2 \).

Lemma 3 implies, under (3.1) in [17] and \(\beta > 1/4 \), that the posterior concentrates at rate at least \(\varepsilon_n = 2\sqrt{K_n/n} \) around \(f_0 \). Set \(A_n = \{ f : \| f - f_0 \|_2 \leq 2\varepsilon_n \} \). Then (2.9) in [17] holds since \(\Delta_n(f - f_0) = -\Delta_n(f_0) \) is independent of \(f \) and follows a Gaussian distribution with vanishing variance. Also, (2.10) in [17] holds using the expression of \(\varepsilon_n \) and that \(K_n \) is a \(o(n) \).

Denote by \(\Pi_{[K_n]} \) the orthogonal projector in \(L^2 \) onto the first \(K_n \) coordinates. Let us compute the centering \(\hat{\psi} \) from Theorem 2.1 of [17],
\[
\hat{\psi} = \psi(f_0) + W(\psi^{(1)}_0)/\sqrt{n} + (w_n, \psi^{(2)}_0 w_n)_L/(2n)
\]
\[
= \sum_{k=1}^{K_n} Y_k^2 + \| f_0 - \Pi_{[K_n]} f_0 \|^2 + 2W(f_0 - \Pi_{[K_n]} f_0)/\sqrt{n}
\]
\[
= \psi + n^{-1/2} [K_n/\sqrt{n} + o(\sqrt{n}K_n^{-2\beta}) + o_P(1)].
\]
As $\beta > 1/4$, our choice of K_n implies $\sqrt{n}K_n^{-2\beta} = o(1)$. From Theorem 2.1 of [17], it follows that
\[L_n(t, Y) := E[\exp^{t\sqrt{n}(\psi(f)-\psi_n)} | Y^n, A_n] \text{ equals with } f_t = (1 - t/\sqrt{n})f_0 - tw_n/n, \]
\[L_n(t, Y) = e^{\frac{t}{\sqrt{n}} - t\phi_n(t)} \int A_n e^{-\frac{n}{2} \|f_0 - f_n\|^2 + \sqrt{n}W(f_0 - f_n) d\Pi(f)} \int e^{-\frac{n}{2} \|f_0 - f_n\|^2 + \sqrt{n}W(f_0 - f_n) d\Pi(f)}. \]

Indeed, this is expression (2.13) in [17], up to the fact that in the denominator $\int A_n$ is replaced by f. But we can do this without affecting the argument since the ratio of the two previous integrals is nothing but $\Pi(A_n | Y^n) = 1 + o_p(1)$.

For any f in L^2, denote $f_n := P_{K_n} f$ and let $\Pi_n := \Pi \circ P_{K_n}^{-1}$. With $B_n = \{ g \in \mathbb{R}^{K_n} | \|g - f_0,n\|^2 \leq 4\varepsilon_n^2 - \|f_0 - f_{0,n}\|^2 \}$, it holds
\[L_n(t, Y) = e^{2\|f_0\|^2 + o(1)} e^{|b_n|} \int B_n e^{-\frac{n}{2} \|f_0 - f_{0,n}\|^2 + \sqrt{n}W(f_0 - f_{0,n}) d\Pi_n(f_n)} \int e^{-\frac{n}{2} \|f_0 - f_{0,n}\|^2 + \sqrt{n}W(f_0 - f_{0,n}) d\Pi_n(f_n)}. \]
The term b_n originates from the fact that the prior sets $f_k = 0$ when $k > K_n$,
\[b_n = \frac{n}{2} \sum_{k > K_n} (f_{0,k} - (f_{t,k} - f_{0,k})^2) + \sqrt{n} \sum_{k > K_n} f_{t,k} \epsilon_k. \]

From the definition of f_t, one gets
\[\sum_{k > K_n} (f_{0,k}^2 - (f_{t,k} - f_{0,k})^2) = (-t^2 - 2t\sqrt{n}) \sum_{k > K_n} f_{0,k}^2. \]
\[\sqrt{n} \sum_{k > K_n} f_{t,k} \epsilon_k = -t \sum_{k > K_n} \epsilon_k f_{0,k}. \]

Since $\beta > 1/4$ the first term is $o(1)$ and the second a $o_p(1)$ using the regularity assumption on f_0.

It is thus enough to focus on
\[\mathcal{I}_n := \int B_n e^{-\frac{n}{2} \|f_n - f_{0,n}\|^2 + \sqrt{n}W(f_n - f_{0,n}) d\Pi_n(f_n)}. \]

Let us write $\mathcal{I}_n = J_n \times K_n$ with
\[J_n = e^{-\frac{n}{2} \|f_n - f_{0,n}\|^2 + \sqrt{n}W(f_n - f_{0,n}) d\Pi_n(f_n)}. \]
\[K_n = e^{-\frac{n}{2} \|f_n - f_{0,n}\|^2 + \sqrt{n}W(f_n - f_{0,n}) d\Pi_n(f_n)}. \]

Each integral appearing in J_n and K_n is an integral over \mathbb{R}^{K_n} and can be rewritten using the explicit form of the prior. Note that K_n can be split in a product of K_n ratios along each coordinate, while J_n cannot because of the integrating set B_n which mixes the coordinates. In integrals involving $f_{t,n}$ we make the affine change of variables which is the inverse of the mapping
\[\psi_n : \mathbb{R}^{K_n} \rightarrow \mathbb{R}^{K_n} \]
\[\{ f_k \} \rightarrow \{ (1 - \frac{t}{\sqrt{n}}) f_k - t \left(\frac{f_{0,k}}{\sqrt{n}} + \frac{\epsilon_k}{\sqrt{n}} \right) \}. \]

That is, we define the new variable $g_n = \psi_n(f_n)$. For simplicity denote
\[c_t = 1 - \frac{t}{\sqrt{n}} \quad \text{and} \quad \delta_k = \delta_k(\epsilon_k) = t \left(\frac{f_{0,k}}{\sqrt{n}} + \frac{\epsilon_k}{n} \right), \quad k \leq K_n \]
\[e^{-K_n} = e^{tK_n/\sqrt{n} + t^2o(1)}. \]
Study of \mathcal{J}_n This leads to

$$
\mathcal{J}_n = \frac{\int \phi_{-1}^{\top}(B_n) \prod_{k=1}^{K_n} e^{-\frac{1}{2}(g_k - f_{0,k})^2 + \sqrt{\pi}k(g_k - f_{0,k})\varphi\left(\frac{g_k - f_{0,k}}{\sigma_k}\right)} dg_k}{\int \prod_{k=1}^{K_n} e^{-\frac{1}{2}(g_k - f_{0,k})^2 + \sqrt{\pi}k(g_k - f_{0,k})\varphi\left(\frac{g_k - f_{0,k}}{\sigma_k}\right)} dg_k}.
$$

Note that \mathcal{J}_n coincides with $\tilde{\Pi}_n(\psi^{-1}_n(B_n) | Y^n)$, where $\tilde{\Pi}_n$ is the distribution

$$
\tilde{\Pi}_n \sim \bigotimes_{k=1}^{K_n} \frac{c_t^{-1}}{\sigma_k} \varphi\left(\frac{c_t^{-1} g_k - \delta_k}{\sigma_k}\right).
$$

The new product prior $\tilde{\Pi}_n$ is a slightly (randomly) perturbed version of Π_n. With high probability, the induced perturbation is not too important. Set, for some $D > 0$ to be chosen,

$$
\mathcal{C}_n = \left\{ \max_{1 \leq k \leq K_n} |\epsilon_i| \leq D \log n \right\}.
$$

Let us use the following standard concentration inequality for the sup-norm of a Gaussian vector. For a large enough universal constant D,

$$
P \left[\max_{1 \leq i \leq n} |\epsilon_i| > D \log n \right] \leq e^{-\log^2 n}.
$$

So the event \mathcal{C}_n has vanishing probability. Thus from the beginning one can work on \mathcal{C}_n. On \mathcal{C}_n, we have $|\delta_k| \leq t|f_{0,k}|/\sqrt{n} + D \log n$. Thus, on \mathcal{C}_n,

$$
\left\{ g : \|g - f_0\|_2^2 \leq \frac{C_t^2}{c_t} \sum_{k=1}^{K_n} \left[\frac{f_{0,k}^2}{n} + \frac{\log^2 n}{n^2} \right] \right\} \subset \psi^{-1}_n(B_n).
$$

We deduce, since $\{K_n(\log n/n)^2 \} \lor n^{-1} = o(\varepsilon_n^2)$, that

$$
\left\{ g : \|g - f_0\|_2^2 \leq 4\varepsilon_n^2 (1 + o(1)) \right\} \subset \psi^{-1}_n(B_n).
$$

It thus follows that

$$
\tilde{\Pi}_n[g : \|g - f_0\|_2^2 \leq 4\varepsilon_n^2 (1 + o(1)) | Y^n] \leq \mathcal{J}_n \leq 1.
$$

The integrating set in the last display is nonrandom and we need to prove a usual contraction result for the posterior $\tilde{\Pi}_n[\cdot | Y^n]$ in P^o-probability. To do so, we first start by restricting to the event \mathcal{C}_n. Given the data Y^n, the quantity $\tilde{\Pi}_n$ is a fixed prior distribution of the product form with a coordinatewise unnormalised density equal to $\tilde{\varphi}_k := c_t^{-1} \varphi(c_t^{-1} \cdot - \delta_k)$. On \mathcal{C}_n, both c_t and δ_k can respectively be made as close to 1 and 0 as wished, uniformly in k, for n large enough. Thus the perturbed $\tilde{\varphi}_k$ also satisfies the conditions of Lemma 3, up to the use of different constants, see Remark 5. Lemma 3 now yields $\tilde{\Pi}_n[g : \|g - f_0\|_2^2 \leq 4\varepsilon_n^2 (1 + o(1)) | Y^n] \to 1$ in probability. Thus $\mathcal{J}_n \to 1$ in probability.

Study of \mathcal{K}_n We now show that $\mathcal{K}_n = c_t^{-K \cdot t} + o_p(1) = c\tilde{\mathcal{K}}_n/\sqrt{n}(1 + o_p(1))$. We start also by changing variables as above and the ratio splits into the product over $1 \leq k \leq K_n$ of the terms

$$
c_t^{-1} \int e^{-\frac{1}{2}(g_k - f_{0,k})^2 + \sqrt{\pi}k(g_k - f_{0,k})\varphi\left(\frac{g_k - f_{0,k}}{\sigma_k}\right)} dg_k.
$$

Setting $u = \sqrt{n}(g_k - f_{0,k})$ and $v = \sqrt{n}(f_k - f_{0,k})$, one needs to control

$$
B_k(\varepsilon_k) := \frac{\int e^{-\frac{1}{2}(u + \varepsilon_k u)\varphi\left(\frac{f_{0,k} + u/\sqrt{n}}{\sigma_k}\right) - \delta_k}) du}{\int e^{-\frac{1}{2}(u + \varepsilon_k u)\varphi\left(\frac{f_{0,k} + u/\sqrt{n}}{\sigma_k}\right) - \delta_k}) du} =: \frac{N_k}{D_k}(\varepsilon_k).
$$
Gaussian prior. Let \(\varphi \) be the standard Gaussian density. The term \(B_k(\epsilon_k) \) can be computed explicitly. If one denotes \(\Sigma^2_{k,t} = \left(1 + \frac{\sigma^2_k \epsilon^2 t}{n} \right)^{-1} \), it holds

\[
B_k(\epsilon_k) = \frac{\Sigma^2_{k,t}}{\Sigma^2_{0,t}} \exp \left(\frac{\Sigma^2_{0,t}}{2} \left(\epsilon_k - \frac{\epsilon^2 f_0 k}{\sigma^2_k \sqrt{n}} + \frac{\delta_k(\epsilon_k) \epsilon^2 t}{\sqrt{n} \sigma^2_t} \right)^2 \right).
\]

Under (3.2) in [17], tedious but simple computations lead to, for some \(C > 0 \),

\[
\left| \sum_{k=1}^{K_n} \log B_k(\epsilon_k) \right| \leq C(1 + o_p(1)) \frac{1}{\sqrt{n}} \sum_{k=1}^{K_n} \left(f_{0,k}^2 + \sigma^2_k n \right).
\]

Uniform prior. Consider the choice \(\varphi(u) = \|u\| \leq M \) with \(M > 16M \). One can write \(B_k(\epsilon_k) = 1 + \zeta_k(\epsilon_k) \) and then use the fact

\[
E_{f_0} \prod_{k=1}^{K_n} B_k(\epsilon_k) - 1 \leq \prod_{k=1}^{K_n} \left(1 + E_{f_0} \zeta_k(\epsilon_k) \right) - 1 \leq e^{\sum_{k=1}^{K_n} E_{f_0} \zeta_k(\epsilon_k)} - 1.
\]

The quantity \(\zeta_k(\epsilon_k) = B_k(\epsilon_k) - 1 \) admits the expression

\[
\zeta_k(\epsilon_k) = \frac{\int e^{-\frac{a_k^2}{2} + \epsilon_k u} \|u\|_{-M,M} \left(\frac{\epsilon^2 f_{0,k}^2 + u^2}{\sigma^2_k} \right) du}{\int e^{-\frac{a_k^2}{2} + \epsilon_k u} \|u\|_{-M,M} \left(\frac{f_{0,k}^2 + u^2}{\sigma^2_k} \right) du} - 1
\]

\[
= \frac{\left(\int_{-b_k}^{-\epsilon_k} + \int_{\epsilon_k}^{b_k} \right) e^{-\frac{a_k^2}{2}} du}{\int_{-b_k}^{b_k} e^{-\frac{a_k^2}{2}} du},
\]

with \(a_k, b_k, c_k, d_k \) defined by (we omit the dependence in \(\epsilon_k \) in the notation)

\[
a_k = M \sigma_k \sqrt{n} + f_{0,k} \sqrt{n}, \quad b_k = M \sigma_k \sqrt{n} + f_{0,k} \sqrt{n} - \delta_k(\epsilon_k) \sqrt{n} c_t,
\]

\[
c_k = M \sigma_k \sqrt{n} - f_{0,k} \sqrt{n} + \delta_k(\epsilon_k) \sqrt{n} c_t, \quad d_k = M \sigma_k \sqrt{n} - f_{0,k} \sqrt{n}.
\]

In order to evaluate \(E_{f_0} \zeta_k(\epsilon_k) \), we distinguish the cases \(\epsilon_k > 0 \) and \(\epsilon_k < 0 \). We present only the argument for \(\epsilon_k > 0 \), the other case is analogous up to a few changes in constants. We have (note that \(b_k, c_k \) still depend on \(w \))

\[
E_{f_0} \zeta_k(\epsilon_k) |_{\epsilon_k > 0} = \int_{-\epsilon_k}^{\epsilon_k} \left| \left(\int_{-a_k}^{-w} + \int_{c_k}^{d_k} \right) e^{-\frac{a_k^2}{2}} du \right| e^{-w^2} dw
\]

\[
+ \int_{-\epsilon_k}^{\epsilon_k} \left| \left(\int_{-a_k}^{-w} + \int_{c_k}^{d_k} \right) e^{-\frac{a_k^2}{2}} du \right| e^{-w^2} dw.
\]

The first integral is bounded by noticing that the denominator is larger than a fixed positive constant, uniformly in \(k \), since \(M > 16M \) implies \(d_k > 3a_k/4 \). Then, the numerator is bounded by the length of the integration interval times the largest value of the integrated function. Note that in the considered domain, the bounds \(-b_k - w \) and \(-a_k - w \) stay below \(-a_k/8 \) (for a large enough \(n \) independently of \(k \)), while \(c_k - w \) and \(d_k - w \) stay above \(a_k/8 \). Thus, for some constant \(D \),

\[
E_{f_0} \left| \zeta_k(\epsilon_k) \right|_{1 < \epsilon_k < 3a_k/4} \leq \int_{-\epsilon_k}^{\epsilon_k} \left| \left(\left| a_k - b_k \right| + \left| c_k - d_k \right| \right) e^{-Dn\sigma^2_k e^{-w^2/2}} dw
\]

\[
\leq c \sigma_k e^{-Dn\sigma^2_k}.
\]
The second integral in the last but one display is bounded as follows. First, $d_k-1 \geq -a_k$ because $M > 4$, so for any real w,
\[
\int_{-a_k-w}^{d_k-w} e^{-\frac{u^2}{2}} du \geq \int_{d_k-1-w}^{d_k-w} e^{-\frac{u^2}{2}} du \geq e^{-(d_k-w)^2/2} \land e^{-(d_k-1-w)^2/2}.
\]

The last inequality follows from the fact that the smallest value of $u \mapsto e^{-u^2/2}$ on an interval of size 1 is attained at one of the endpoints. Thus
\[
E_{f_n} \left[|\zeta_k(e_k)| 1_{C_k>3a_k/4} \right] \leq \int_{2a_k}^{\infty} (|a_k-b_k| + |c_k-d_k|)(e^{(d_k-w)^2/2} \lor e^{(d_k-1-w)^2/2}) e^{-\frac{u^2}{2}} du
\]
\[
\leq C \int_{2a_k}^{\infty} (\sigma_k + \frac{w}{\sqrt{n}})(e^{\frac{u^2}{2}-w d_k} \lor e^{(d_k-1)^2/2-w(d_k-1)}) du
\]

The term in factor of σ_k is bounded by
\[
c_1 \sigma_k e^{-D n \sigma_k^2},
\]
with λ small enough constant. The term in factor of w is bounded similarly using $x e^{-x} \leq C e^{-(1-r)x}$ for all $x \geq 0$, for small $r > 0$. Thus in order to have $\Pi_{k=1}^{K_n} B_k(e_k) = 1 + o_p(1)$, it is enough that for any $D > 0$,
\[
\sum_{k=1}^{K_n} \sigma_k e^{-D n \sigma_k^2} = o(1).
\]

Prior with φ Lipschitz. Using the same techniques and (3.2) in [17], one checks
\[
E_{f_n} |\zeta_k(t)| \leq C t \left[\frac{1}{\sqrt{n}} \frac{|f_{0,k}|}{\sigma_k} + \frac{2}{\sigma_k \sqrt{n}} \frac{t}{\sqrt{n}} + \frac{1}{n \sigma_k} \right].
\]

C Appendix: Density estimation

C.1 Random histograms

We first recall some basic facts that will be used throughout the proofs on random histograms.

Lemma 4. Let $k \geq 1$ be an integer.

1. (i) For any $f \in H_k$, it holds $f_{[k]} = f$

2. (ii) For any density f on $[0,1]$, it holds $f_{[k]} \in H_k^1$.

3. (iii) Let $f \in H_k$ and $g \in L^2[0,1]$, then
\[
\int_0^1 f g = \int_0^1 f_{[k]} g_{[k]} = \int_0^1 f_{[k]} g_{[k]}.
\]

4. (iv) Let g be a given function in C^α, with $\alpha > 0$. Then
\[
\|g - g_{[k]}\|_\infty \leq k^{-\lfloor \alpha / 1 \rfloor}.
\]

Proposition 4. There exist $C, M > 0$ such that
\[
P_0 \left[\exists k \leq \frac{n}{\log n} ; \, \Pi [f \notin A_{n,k}(M) | Y^n, k] > e^{-ck \log n} \right] = o(1).
\]

Suppose now $f_0 \in C^3$ with $0 < \beta \leq 1$. If $k_n(\beta) = (n/\log n)^{1/(2\beta+1)}$ and $c_n(\beta) = k_n(\beta)^{-\beta}$, then for k_1, M large enough,
\[
\Pi [|f_{0,f} - f| \leq M c_n(\beta) ; \, k \leq k_1 k_n(\beta) | Y^n] = 1 + o_p(1).
\]
Proof of Proposition 1. This result is a simple application of Kleijn and van der Vaart [33], we sketch the proof here. The notation \(f_{\omega,k} \) is defined in Section 4.2 of the main text [17], together with \(I_j = \{(j-1)/k, j/k\} \) for all \(k \leq n/(\log n)^2 \) and \(A_{n,k} = \{\omega; h(f_{0|k}), f_{\omega,k}) \leq M \sqrt{\frac{\log n}{n}}\}. \) Note that for all \(k, \omega^0 = (\omega^0_1, \cdots, \omega^0_k) \) with \(\omega_j^0 = \int_{I_j} f_0(x)dx, \) minimizes over \(S_k \) the Kullback-Leibler divergence \(KL(f_0, f_{\omega,k}) \). We have from Lemma 4,

\[
\Pi \left[A_{n,k}^c | Y^n, k \right] = \int_{A_{n,k}^c} e^{\epsilon_{\omega}(f_{\omega,k}) - \epsilon_{\omega}(f_{0|k})} d\Pi_k(\omega) - \int e^{\epsilon_{\omega}(f_{\omega,k}) - \epsilon_{\omega}(f_{0|k})} d\Pi_k(\omega),
\]

\[
\int_0^1 f_0(x) \log \left(\frac{f_{0|k}(x)}{f_{\omega,k}(x)} \right) dx = \sum_{j=1}^k \omega_j^0 \log \left(\frac{\omega_j^0}{\omega_j} \right) = KL(f_{0|k}, f_{\omega,k})
\]

and

\[
V_4(f_{0|k}, f_{\omega,k}) := \int_0^1 f_0(x) \left(\log \left(\frac{f_{0|k}(x)}{f_{\omega,k}(x)} \right) - KL(f_{0|k}, f_{\omega,k}) \right)^4 dx
\]

\[
= \sum_{j=1}^k \omega_j^0 \left(\log \left(\frac{f_{0|k}(x)}{f_{\omega,k}(x)} \right) - KL(f_{0|k}, f_{\omega,k}) \right)^4 dx.
\]

so that considering the set \(S_n := \{\omega \in S_k; |\omega_j - \omega_j^0| \leq C \omega_j^0 \sqrt{k \log n/n} \}, \) then there exists \(C_1 > 0 \) such that

\[
S_n \subset \left\{ \omega; KL(f_{0|k}, f_{\omega,k}) \leq C_1 \frac{k \log n}{n}, \quad V_4(f_{0|k}, f_{\omega,k})^{1/2} \leq C_1 \frac{k \log n}{n} \right\}
\]

and from Lemma 6.1 of [27], there exists \(c > 0 \) such that

\[
\Pi[S_n] \geq e^{-ck \log n},
\]

and condition 2.4 of Theorem 2.1 of Kleijn and van der Vaart [33] is satisfied. Moreover, since

\[
d(f_{\omega_1}, f_{\omega_2})^2 := \int_0^1 (\sqrt{f_{\omega_1}} - \sqrt{f_{\omega_2}})^2(x) f_0(x) f_{0|k} dx = h^2(f_{\omega_1}, f_{\omega_2}),
\]

Lemmas 2.1 and 2.3 of Kleijn and van der Vaart [33] imply that condition (2.5) of Theorem 2.1 of Kleijn and van der Vaart [33] can be replaced by the usual Hellinger-entropy condition. Since the \(\epsilon \)-Hellinger entropy of \(S_k \) is bounded by a term of order \(k \log(1/\epsilon) \), we obtain for all \(k \leq n/(\log n)^2 \),

\[
P_0 \left[A_{n,k}^c | Y^n, k \right] > e^{-ck \log n} \geq O(1/(k^2 \log n)),
\]

for some \(a > 0 \), where the bound \(1/(k^2 \log n) \) comes from \(1/(n\epsilon^2 n_k^2) \) which is the usual bound obtained from the proof of Theorem 1 of [29] with a Kullback-Leibler neighbourhood associated with \(V_4 \). This implies (C.2).

Finally we prove (C.3) for \(f_0 \in C^2 \). This is a consequence of the fact that

\[
\Pi \left[k > k_1 (n/ \log n)^{1/(2\beta + 1)} \right] \leq e^{-c_1 n \epsilon_n^\beta (\beta)}
\]

for some \(c_1 > 0 \) and that

\[
\Pi \left[k > k_2 (n/ \log n)^{1/(2\beta + 1)} \right] \geq e^{-c_2 n \epsilon_n^\beta (\beta)}
\]

for some \(c_2 > 0 \), together with Theorem 1 of Ghosal et al. [27].

The following Lemma gives the Jacobian of the change of variable used in the proofs on random histograms in [17], with the notation in use there.
Lemma 5. Denoting by $\Delta(\zeta)$ the Jacobian of the change of variables

$$(\omega_1, \ldots, \omega_{k-1}) \rightarrow \left(\frac{\omega_1 \gamma_{i-1}}{S_{\gamma_{i-1}}(\omega)}, \ldots, \frac{\omega_{k-1} \gamma_{k-1}}{S_{\gamma_{k-1}}(\omega)} \right) = (\zeta_1, \ldots, \zeta_{k-1}) =: \zeta^T,$$

it holds, with $\gamma = (\gamma_1, \ldots, \gamma_{k-1})^T$,

$$\Delta(\zeta) = S_\gamma(\zeta)^{-k} \prod_{j=1}^k \gamma_j.$$

Proof. Simple calculations give that the matrix M of the change of variables, that is the matrix of partial derivatives $\partial \omega / \partial \zeta$, has general term m_{ij}, for $1 \leq i, j \leq k - 1$, with

$$m_{ij} = \frac{\gamma_i}{S_\gamma(\zeta)} \delta_{ij} - \frac{\gamma_i \gamma_j (\gamma_j - \gamma_k)}{S_\gamma(\zeta)^2}.$$

Let Γ denote the diagonal matrix $\text{Diag}(\gamma_1, \ldots, \gamma_{k-1})$ and Id_{k-1} the identity matrix of size $k - 1$. Then

$$M = S_\gamma(\zeta)^{-1}(\Gamma - S_\gamma(\zeta)^{-1}(\gamma \zeta)(\gamma - \gamma_k)^T) = S_\gamma(\zeta)^{-1}\Gamma(\text{Id}_{k-1} - S_\gamma(\zeta)^{-1}\zeta(\gamma - \gamma_k)^T).$$

It remains to compute the determinant $\det(M)$ of M. For this note that for any vectors v, w in \mathbb{R}^{k-1}, it holds

$$\det(\text{Id}_{k-1} - vw^T) = 1 - w^Tv.$$

Deduce that $\Delta(\zeta) = S_\gamma(\zeta)^{-k+1}(1 - S_\gamma(\zeta)^{-1}(\gamma - \gamma_k)^T \zeta)\det(\Gamma)$. A direct computation shows that the term in brackets equals $\gamma_k S_\gamma(\zeta)^{-1}$. \hfill \Box

C.2 Gaussian process priors

Proof of Proposition 3. Recall that we need only prove condition (4.4) in [17], since the posterior concentration condition is a consequence of (4.16) in [17] together with the results of van der Vaart and van Zanten [43].

Because ψ_{f_0} might not belong to \mathcal{B}, we cannot directly consider the change of measure from W to $W - t\psi_{f_0}/\sqrt{n}$. We first prove that under conditions (4.17) and (4.18) in [17]

$$\sup_{\eta \in A_n} (\ell_n(\eta_0) - \ell_n(\eta_n)) = o_p(1), \quad (C.4)$$

where A_n is a subset of $\{f, d(f_0, f) \leq \varepsilon_n\}$, where $d(\cdot, \cdot)$ is the Hellinger or the L_1 distance and

$$\eta_n = \eta - t \frac{\psi_n}{\sqrt{n}} - \log \left(\int_0^1 e^{\eta - t\psi_n/\sqrt{n}} \right).$$

Define the following isometry associated to the Gaussian process W:

$$U : \text{Vect}(\{t \rightarrow K(\cdot, t), t \in \mathbb{R}\}) \rightarrow L^2(\Omega)$$

$$\eta := \sum_{i=1}^p a_i K(\cdot, t_i) \rightarrow \sum_{i=1}^p a_i W(t_i) =: U(\eta),$$

and since by definition any $h \in \mathcal{H}$ is the limit of a sequence $\sum_{i=1}^{p(n)} a_{i,n} K(\cdot, t_{i,n})$, it can be extended into an isometry $U : \mathcal{H} \rightarrow L^2(\Omega)$. Then Uh is the limit in $L^2(\Omega)$ of the sequence $\sum_{i=1}^{p(n)} a_{i,n} W(t_{i,n})$, so that Uh is a Gaussian random variable with mean 0 and variance $\|h\|_2^2$. Set $B_n = \{f, d(f_0, f) \leq \varepsilon_n\}$ as in van der Vaart and van Zanten [43], and define the event

$$A_n = \{|U(\psi_n)| \leq M \sqrt{n} \varepsilon_n \|\psi_n\|_\mathcal{H}\} \cap B_n.$$
Here \(f \) satisfies \(|U(\psi_n)| \leq M \sqrt{n \varepsilon_n} \|\psi_n\|_\mathcal{H} \) is to be understood as \(f = e^w/(\int_0^1 e^{w \rho} \, dx) \) and \(w \in \{ |U(\psi_n)| \leq M \sqrt{n \varepsilon_n} \|\psi_n\|_\mathcal{H} \} \), with \(w \) a realisation of \(W \). Since
\[
\Pi \left[U \left(\frac{\psi_n}{\|\psi_n\|_\mathcal{H}} \right) > M \sqrt{n \varepsilon_n} \right] \leq 2e^{-\frac{M^n n^2}{4}},
\]
taking \(M \) large enough, we have, using van der Vaart and van Zanten [43],
\[
\Pi [A_n | Y^n] = 1 + o_p(1).
\]
We now study \(\ell_n(\eta_n) - \ell_n(\eta) \) on \(A_n \). Using (4.17) in [17], on \(A_n \),
\[
\ell_n(\eta_n) - \ell_n(\eta) = \frac{t}{\sqrt{n}} \sum_{i=1}^n (\hat{\psi}_{f_0}(Y_i) - \psi_n(Y_i)) + n \left(\log E_{\eta}(e^{-t\hat{\psi}_{f_0}/\sqrt{n}}) - \log E_{\eta}(e^{-t\psi_n/\sqrt{n}}) \right)
\]
\[
= t \gamma_n(\hat{\psi}_{f_0} - \psi_n) - \sqrt{n} t E_{\eta}(\psi_n) + n \left(-t E_{\eta}(\hat{\psi}_{f_0} - \psi_n) + t^2 E_{\eta}(\hat{\psi}_{f_0}^2 - \psi_n^2) \right) + o(1)
\]
\[
= t \gamma_n(\hat{\psi}_{f_0} - \psi_n) + t \sqrt{n} \int (f_0 - f_\eta)(\hat{\psi}_{f_0} - \psi_n) + o(1).
\]
Since \(\|f_0 - f_\eta\| \leq \|\hat{\psi}_{f_0} - \psi_n\|_\infty \leq \zeta_n \varepsilon_n \) and \(\gamma_n(\hat{\psi}_{f_0} - \psi_n) = o_p(1) \), we obtain, using condition (4.18) in [17], that
\[
\sup_{\eta \in A_n} \|\ell_n(\eta_n) - \ell_n(\eta)\| = o_p(1)
\]
Hence to prove (4.4) in [17] it is enough to prove that, in \(P_0^n \) probability
\[
\frac{\int_{A_n} e^{\ell_n(\eta_n) - \ell_n(\eta)} \, d\Pi(\eta)}{\int e^{\ell_n(\eta) - \ell_n(\eta)} \, d\Pi(\eta)} \to 1.
\]
Lemma 17 in Castillo [12] states that for all \(\Phi : \mathcal{B} \to \mathbb{R} \) measurable and for any \(g, h \in \mathcal{H} \), and any \(\rho > 0 \),
\[
E \left[\|U(g)\|_\Phi(W - h) \right] = E \left[\|U(g) + (g, h)\|_\Phi \right].
\]
Since \(\|\psi_n\|_\infty \leq \|\hat{\psi}_{f_0}\|_\infty + \zeta_n \), if \(w \) is such that \(h^2(f_w, f_0) \leq \varepsilon_n^2 \) with \(f_w = e^w/(\int_0^1 e^w \, dx) \)
\[
\int_{\eta \notin \mathcal{W}_n/\sqrt{n} \in \hat{B}_n} \|U(\psi_n)| \leq M \sqrt{n \varepsilon_n} \|\psi_n\|_\mathcal{H} \, e^{\eta(\psi_n) - \eta(\psi_n)} \, d\Pi(\eta)
\]
The next Proposition provides a rate of convergence in $\|\cdot\|_\infty$-norm and is used in [17] to handle remainder terms for non-linear functionals.

Proposition 5. Let f_0 be bounded away from 0 and ∞. Suppose that $\eta_0 = \log f_0$ belongs to C^β. Let the prior Π be the law induced by a centered Gaussian process W in $B = C^0$ with RKHS H. Let $\alpha > 0$. Suppose that the process W takes values in C^β, for all $\delta < \alpha$ and let $\varepsilon_n \to 0$ satisfy (4.17) in [17]. Suppose that for some $K_n \to \infty$ and some $0 < \gamma < \alpha$, the sequence

$$\rho_n := \varepsilon_n \sqrt{K_n} + \sqrt{n} \varepsilon_n K_n^{-\gamma} + K_n^{-\beta} \to 0$$

(C.7)

as $n \to \infty$. Then for large enough M,

$$\Pi(f : \|f - f_0\|_2 \leq M \varepsilon_n \mid X^{(n)}) \to 1,$$

(C.8)

and, for any ρ_n defined by (C.7) such that $\rho_n = o(1)$,

$$\Pi \left[f : \|f - f_0\|_\infty \leq M \rho_n \mid X^{(n)} \right] \to 1.$$

(C.9)

The condition on the path of W of Proposition 5 is satisfied for a great variety of Gaussian processes, for instance for the Riemann-Liouville type processes (up to adding the polynomial part, which does not affect the property) this is established in [39]. For the Riemann-Liouville process indexed by $\alpha > 0$, bounds on the concentration function have been obtained in [43]-[11], leading to a rate $\varepsilon_n = n^{-(\alpha \wedge \beta)/(1+2\alpha)}$ up to logarithmic terms. Thus, taking $n^{1/(2\alpha+1)}$ in (C.7) leads to a rate

$$\rho_n = n^{\frac{1}{2\alpha+1} - \alpha \wedge \beta},$$

for arbitrary $s > 0$ (corresponding to the choice $s = \alpha - \gamma$ in (C.7)). The rate ρ_n is some (intermediate) sup-norm rate. The proof of Proposition 5 can thus be seen as an alternative route to derive results such as the ones obtained in [31], here for slightly different priors (here one gets an extra−arbitrary− $s > 0$ in the rate. It can be checked that in some examples one can in fact take $s = 0$. Since this has no effect on the verification of the BvM theorem for functionals, we refrain from stating such refinements).

Proof of Proposition 5. A useful tool in the proof is the existence of a localised wavelet basis on $[0,1]$. Let us start by introducing some related notation and stating useful properties of the basis. For convenience we consider the basis constructed in Cohen et al. [19], that we call CDV-basis. We take the standard notation \{\psi_{lk}, l \geq 0, 0 \leq k \leq 2^l - 1\}. The family \{\psi_{lk}\} forms a complete orthonormal system of $L^2[0,1]$ and the basis elements can be chosen regular enough so that for a given $\gamma > 0$, Hölder and Besov-norm of spaces of regularity up to γ can be characterized in terms of wavelet coefficients. For any g in $C^\gamma[0,1]$, if γ is not an integer, we have $C^\gamma = B_{\gamma,\infty,\infty}$ and denoting $\| \cdot \|_\gamma$ the norm of C^γ,

$$\|g\|_\gamma \equiv \max_{l \geq 0} \max_{0 \leq k \leq 2^l - 1} 2^{l(\frac{1}{2} + \gamma)} |\langle g, \psi_{lk} \rangle_2|,$$

where \equiv means equivalence up to universal constants. We shall further use two properties of the CDV-basis, namely that it is localised in that \(\sum_{0 \leq k \leq 2^l - 1} \|\psi_{lk}\|_\infty \lesssim 2^{l/2}\), and that the constant function equal to 1 on $[0,1]$ is orthogonal to high-level wavelet functions, that is \(\langle 1, \psi_{lk} \rangle_2 = 0\), any $l \geq L$ and any k, for L large enough, see Cohen et al. [19] p. 57.

Now we start the proof by recalling that, here $f = f_w = \exp(w - c(w))$ and that f_0 is bounded away from 0,

$$V(f_0, f) \geq c \|w - c(w) - w_0\|_2^2.$$

(C.10)

From Lemma 8 in Ghosal and van der Vaart [28], we know that, for some universal constant C,

$$\max(V(f, f_0), V(f_0, f)) \leq Ch^2(f, f_0)(1 + \log \|f/f_0\|_\infty).$$

and the term in brackets is bounded above by $1 + \log \exp(\|w_0 - w + c(w)\|_\infty) = 1 + \|w_0 - w + c(w)\|_\infty$.

34
On the other hand, it is possible to link the sup-norm \(\|w_0 - w + c(w)\|_\infty \) to the \(L^2 \)-norm via basis expansions. Fix \(\gamma < \alpha \) with \(\gamma \notin \mathbb{N} \). Since by assumption, \(W \) belongs to \(C^\delta \) for any \(\delta < \alpha \), it belongs in particular to \(C^{\gamma+2\delta} \) for small enough \(\delta \). The continuous embedding \(C^{\gamma+2\delta} \hookrightarrow B_{\gamma,\delta-1,1} \) thus shows that \(W \) can be seen as a Gaussian random element in the separable Banach space \(B_{\gamma,\delta-1,1}[0,1] \). Thus Borell’s inequality in the form of Corollary 5.1 in van der Vaart and van Zanten [44] for the Gaussian process \(W \) leads to

\[
\mathbb{P}(\|W\|_{\gamma,\delta-1,1} > M\sqrt{n}\varepsilon_n) \lesssim e^{-Cn\varepsilon_n^2},
\]

for any given \(\gamma > 0 \), provided \(M \) is chosen large enough. The continuous embedding \(B_{\gamma,\delta-1,1} \hookrightarrow B_{\gamma,\infty} = C^\gamma \), any \(\gamma, \delta > 0 \), \(\gamma \notin \mathbb{N} \) now implies that

\[
\mathbb{P}(\|W\|_\gamma > M\sqrt{n}\varepsilon_n) \lesssim e^{-Cn\varepsilon_n^2}.
\]

Setting \(\mathcal{F}_n = \{w, \|w\|_\gamma \leq M\sqrt{n}\varepsilon_n\} \), one deduces, similar to [43], that \(\Pi(\mathcal{F}_n | Y^n) \to 1 \). In the sequel, we thus work on the set \(\mathcal{F}_n \).

Let us now expand \(w_0 - w + c(w) \) onto the CDV wavelet basis on \([0,1]\). Let \(K_n = n^{1/(2\alpha+1)} \) and set \(L_n = \log_2 K_n \). Then

\[
\|w_0 - w + c(w)\|_\infty = \| \sum_{l \geq 0} \sum_{0 \leq k \leq 2^l - 1} (w_0 - w + c(w), \psi_{lk})_2 \psi_{lk} \|_\infty
\]

\begin{align*}
&\leq \sum_{l \leq L_n} 2^{l/2} \max_{0 \leq k \leq 2^l - 1} |(w_0 - w + c(w), \psi_{lk})_2| \quad \text{(C.11)} \\
&+ \sum_{l > L_n} 2^{l/2} \max_{0 \leq k \leq 2^l - 1} |(w_0 - w + c(w), \psi_{lk})_2|. \quad \text{(C.12)}
\end{align*}

By Cauchy-Schwarz inequality, and using the fact that the maximum of squares is bounded above by the sum of the squares, the term (C.11) is bounded above by \(\sqrt{K_n}\|w_0 - w + c(w)\|_2 \). For the term (C.12), let us write \(\langle w_0 - w + c(w), \psi_{lk} \rangle_2 = \langle w_0 - w, \psi_{lk} \rangle_2 \) by orthogonality of constants to high resolution wavelets. Next using the control of \(\|w\|_\gamma \) on \(\mathcal{F}_n \),

\[
\sum_{l > L_n} 2^{l/2} \max_{0 \leq k \leq 2^l - 1} |\langle w, \psi_{lk} \rangle_2| \lesssim \|w\|_\gamma \sum_{l > L_n} 2^{l/2} 2^{-l(\frac{1}{2} + \gamma)} \lesssim \sqrt{n}\varepsilon_n K_n^{-\gamma}.
\]

Similarly, using that \(w_0 \in C^\beta \), one gets that the same quantity with \(w \) replaced by \(w_0 \) is bounded above by \(K_n^{-\beta} \).

Putting together the previous inequalities and (C.10), one obtains

\[
c\|w_0 - w + c(w)\|_2^2 \leq Ch^2(f, f_0) \left(1 + \alpha(1) + \sqrt{n}\varepsilon_n K_n^{-\gamma} + \sqrt{K_n}\|w_0 - w + c(w)\|_2 \right)
\]

\[
\leq Ch^2(f, f_0) \left(2 + \alpha(1) + \sqrt{n}\varepsilon_n K_n^{-\gamma} + K_n\|w_0 - w + c(w)\|_2^2 \right)
\]

\[
\lesssim \left(1 + \sqrt{n}\varepsilon_n K_n^{-\gamma} \right) \varepsilon_n^2 + (K_n\varepsilon_n^2)\|w_0 - w + c(w)\|_2^2,
\]

where for the last inequality we have used that (4.16) in [17] implies posterior convergence in the Hellinger distance at rate \(\varepsilon_n \), as in van der Vaart and van Zanten [43]. Since \(K_n\varepsilon_n^2 \) is a \(o(1) \) by assumption, one obtains

\[
(c/2)\|w_0 - \varphi_n + c(\varphi_n)\|_2^2 \leq O(1)\varepsilon_n^2.
\]

Inserting this bound back in the previous inequality \(\|w_0 - w + c(w)\|_\infty \leq (\text{C.11}) + (\text{C.12}) \) in the bound of (C.11) leads to

\[
\|w_0 - w + c(w)\|_\infty \leq \sqrt{K_n}\varepsilon_n + \sqrt{n}\varepsilon_n K_n^{-\gamma} + K_n^{-\beta}.
\]

Conclude that \(\|w_0 - w + c(w)\|_\infty \leq \rho_n \).
The squared L^2-norm can be expressed as
\[
\int (f - f_0)^2 = \int f_0^2(e^{w-c(w)}-w_0 - 1)^2
\]
From what precedes we know that with posterior probability tending to 1, the sup-norm of $w - c(w) - w_0$ is bounded. Therefore, the inequality $|e^x - 1| \leq C|x|$, valid for bounded x and C large enough implies
\[
\int (f - f_0)^2 \leq C^2 \int f_0^2(w - c(w) - w_0)^2 \lesssim \|w - c(w) - w_0\|_2^2 \lesssim \varepsilon_n^2
\]
on a set of posterior probability tending to 1, using that f_0 is bounded from above. For the result in sup-norm, we again use the previous inequality to obtain, on a set of overwhelming posterior probability,
\[
\|f - f_0\|_\infty = \|f_0(e^{w-c(w)}-w_0 - 1)\|_\infty \leq C\|w - c(w) - w_0\|_\infty.
\]
\[\square\]

D Appendix: Autoregressive model, proof

Proof of Theorem 5.1. Since the model is uniformly geometrically ergodic, the choice of the initial distribution does not matter and we can work without loss of generality under the stationary distribution, denoted \mathbb{P}_0.

Let $A_n = \{f_{\omega,k}: k \leq k_1k_n(\beta), \|f_{\omega,k} - f_0\|_{2,r} \leq M\varepsilon_n(\beta)\}$. Following Ghosal and van der Vaart [29] Section 7.4.1, we can prove that
\[
\Pi[A_n|Y^n] = 1 + o_p(1). \tag{D.1}
\]
Indeed, denote by $I_0 = [-a_n, a_n]^c$ and $\omega^r = (\omega_1^r, \cdots, \omega_k^r)$, with $\omega_j^r = r(I_j)^{-1}\int f_0(x)r(x)dx$, then
\[
\|f_0\|_{I_0^c, r} \leq M\Phi(-a_n + M) \lesssim n^{-b^2(1-\delta)/2}, \forall \delta > 0
\]
for n large enough, where $\Phi(\cdot)$ is the cumulative distribution function of a standard Gaussian distribution. We thus choose $b^2(1-\delta) \geq 2\beta/(2\beta + 1)$ for some $\delta > 0$ arbitrarily small. Then, for all $f_0 \in C^2$, all $j \geq 1$ and any k such that $L(a_{n,k})^{\beta} \leq \varepsilon_n(\beta)/2$,
\[
\pi(\|f - f_0\|_{s,r} \leq \varepsilon_n(\beta)) \geq \pi_k(k)\pi_{\omega|k}(\|\omega - \omega_0\|_{s,r} \leq \varepsilon_n(\beta)/2)
\]
choosing $k = [b_0k_n(\beta)]$ implies that
\[
\pi(\|f - f_0\|_{s,r} \leq \varepsilon_n(\beta)) \geq e^{-ck_n(\beta)\log n}(\varepsilon_n(\beta)/(4L))^{k_n(\beta)} \leq e^{-ck_n(\beta)\log n}
\]
for some $c > 0$ large enough. Moreover $\Pi(k > k_1k_n(\beta)) \leq e^{-ck_1k_n(\beta)\log n}$ so that if k_1 is large enough, combining the above results with Section 7.4.1 Ghosal and van der Vaart [29], we finally obtain (D.1).

We now study the LAN expansion in the model. Conditioning on $Y_0 = y_0$,
\[
\ell_{y_0}(f) - \ell_{y_0}(f_0) = \sum_{i=1}^{n} \varepsilon_i(f(Y_{i-1}) - f_0(Y_{i-1})) - \frac{1}{2} \sum_{i=0}^{n-1} (f_0(Y_i) - f(Y_i))^2
\]
\[
= -\frac{n}{2} f_0 - f\|_{2,q_0}^2 + \sqrt{n}W_n(f - f_0) + R_n(f, f_0)
\]
where $q_0 = q_{f_0}$ and $W_n(g) = n^{-1/2} \sum_{i=1}^{n} \varepsilon_i g(Y_{i-1})$ and
\[
R_n(f, f_0) = -\frac{\sqrt{n}}{2} \bar{G}_n((f_0 - f)^2) := -\frac{1}{2} \sum_{i=0}^{n-1} [(f_0(Y_i) - f(Y_i))^2 - \|f_0 - f\|_{2,q_0}^2].
\]
Next let us study the expansion of the functional \(\psi(f) \). If \(\beta > 1/2 \), for all \(f \in A_n \), \(\| f - f_0 \|_{2,q_0} \lesssim \varepsilon_n(\beta) = o(1/\sqrt{n}) \) and since for all \(f \) such that \(\| f \|_\infty \leq L \), \(r(y) \lesssim qf(y) \lesssim r(y) \), it holds

\[
\psi(f) - \psi(f_0) = 2 \int_\mathbb{R} q_0(y)(f - f_0)(y) f_0(y) dy + 2 \int_\mathbb{R} (q_f - q_0)(y)(f - f_0)(y) f_0(y) dy + o(1/\sqrt{n}),
\]

uniformly over \(A_n \). Moreover, simple computations imply that

\[
\int_\mathbb{R} \left| p_f(y|x) - p_{f_0}(y|x) \right| r(x) dx dy \leq C(L) \| f - f_0 \|_{2,r},
\]

where \(C(L) \) is a constant depending only on \(L \). Using the Markov property we obtain for all \(m \geq 1 \)

\[
\int_\mathbb{R} \left| p_f^{(m)}(y|x) - p_{f_0}^{(m)}(y|x) \right| r(x) dx dy \leq m \int_\mathbb{R} \left| p_f(y|x) - p_{f_0}(y|x) \right| r(x) dx dy \leq m C(L) \| f - f_0 \|_{2,r},
\]

where \(p_f^{(m)}(y|x) \) is the conditional distribution of \(Y_m \) given \(Y_0 = x \). Since the Markov chain under \(P_t \) is uniformly geometrically ergodic we can deduce choosing \(m = \lfloor C_0 \log n \rfloor : m_n \) with \(C_0 \) large enough

\[
\| q_f - q_0 \|_1 \lesssim 2m_n \| f - f_0 \|_{2,r} + 2^{m_n} \lesssim \varepsilon_n \log n
\]

with \(\rho < 1 \) and independent of \(f \) (depending only on \(L \)). Hence, uniformly over \(A_n \),

\[
\psi(f) = \psi(f_0) + 2 \int_\mathbb{R} q_0(y)(f - f_0)(y) f_0(y) dy + o(1/\sqrt{n}),
\]

so that \(\psi^{(1)}_0 = 2f_0 \) and \(\psi^{(2)}_0 = 0 \). Set \(f_t = f - t \psi^{(1)}_0/\sqrt{n} \).

We now have to verify assumption \(\textbf{A} \), case \(\textbf{A1} \), i.e. control

\[
R_n(f_t, f_0) - R_n(f, f_0) = -\frac{2t^2}{\sqrt{n}} G_n(f_0^2) + 2 t G_n(f_0(f - f_0)).
\]

Let \(k \leq k_1 k_n(\beta) \), one can write, if \(f = f_{\omega,k} \),

\[
R_n(f_t, f_0) - R_n(f, f_0) = -\frac{2t^2}{\sqrt{n}} G_n(f_0^2) + 2 t G_n(f_0(f_{\omega,k} - f_0) + f_0(f_{\omega,k} - f_{0,a})).
\]

Since \(\| f_0 \|_{2,q_0} \leq \| f_0 \|_\infty \leq L \) and since the Markov chain \((Y_t)\) is geometrically uniformly ergodic under the assumptions on \(f_0 \), we obtain that \(G_n(f_0^2) = o_p(\sqrt{n}) \). Also we decompose \(f_0 \) into \(f_{0,a} = f_0(x)\mathbb{1}_{[-a,a]} \) and \(f_{0,a} = f_0(x)\mathbb{1}_{[-a,a]} \). We have \(f_{\omega,k} - f_0 = f_{\omega,k} - f_{0,a} - f_{0,a} \) and \(\| f_{0,a} \|_{2,q_0} \lesssim \varepsilon_n \) so that \(G_n(f_0 f_{0,a}) = o_p(1) \). To control uniformly on \(k \leq k_1 k_n(\beta) \), \(G_n(f_0(f_{\omega,k} - f_{0,a})) \) we use Theorem 8 of Adamczak \cite{1} which states that there exists a constant \(\kappa_0 \) depending on the Hölder constant \(K_0 \) of \(f_0 \),

\[
\mathbb{P}_0[|G_n(f_0(f_{\omega,k} - f_{0,a}))| > \varepsilon] \leq \exp(-\kappa_0 t^2 k^{2\beta})
\]

since the Markov chain \((Y_j)\) is aperiodic, irreducible, satisfies the drift condition and since

\[
\left| \sum_{i=0}^{n-1} f_0(x_i)(f_{\omega,k} - f_{0,a})(x_i) - f_0(y_i)(f_{\omega,k} - f_{0,a})(y_i) \right| \leq \| f_0 \|_\infty \| f_{\omega,k} - f_{0,a} \|_{\infty} |\{ i; x_i \neq y_i \}| \leq \| f_0 \|_\infty K_0 k^{-\beta} |\{ i; x_i \neq y_i \}|.
\]

37
Therefore $\mathbb{G}_n(f_0(f_{\omega,k} - f_{0,a_n})) = o_p(1)$ uniformly on $\{\tilde{k}_n \leq k \leq k_1k_n\}$, for any sequence \tilde{k}_n increasing to infinity. Now for all $m_0 > 0$ and all $k \leq m_0$ such that $f_{\omega,k} \in A_n$, writing $h = f_0(f_{\omega,k} - f_{0,a_n}) - \int R f_0(f_{\omega,k} - f_{0,a_n})q_0(y)dy$, it holds

$$P_0[|\mathbb{G}_n(h)| > \delta] \leq \frac{\|h\|_{\mathbb{P}_0}^2}{\delta^2} + \frac{1}{n} \sum_{i=0}^{n-1} \sum_{j>i} E_0[h(Y_i)h(Y_j)] \lesssim \frac{\varepsilon_n}{\delta^2},$$

so that $\mathbb{G}_n(f_0(f_{\omega,k} - f_{0,a_n})) = o_p(1)$ uniformly on $\{1 \leq k \leq k_1k_n(\beta)\} \cap \{k; f_{\omega,k} \in A_n\}$. We now study $\mathbb{G}_n(f_0(f_{\omega,k} - f_{\omega,k}))$ on A_n. We have

$$\mathbb{G}_n(f_0(f_{\omega,k} - f_{\omega,k})) = \sum_{j=1}^{k} (\omega_j - \omega_j'\mathbb{G}_n(f_0I_{j})).$$

We use Theorem 5 of Adameczak and Bednorz [2] with $m = 1$ the small set being the whole set so that $\sigma^2 \leq E_0[f_0^2(Y_1)I_{Ij}] \leq \sigma(I_j)$, $\alpha = 1$ and the constants a, b, c uniformly bounded in a similar way. We present our bound in the case of a. As in Adameczak and Bednorz [2], we define

$$a = \inf\{c > 0; E_{P_0}[\exp(|f_0(Y_1)I_{Ij} - \mu_{0,j}|/c)] \leq 2\}, \quad \mu_{0,j} = E_0[f_0(Y_j)I_{Ij}] = O(r(I_j))$$

where P_0 is the distribution of the split chain starting at x. For all $c > 0$,

$$E_{P_0}[\exp(|f_0(Y_1)I_{Ij} - \mu_{0,j}|/c)] \leq (r(I_j)c^{1/c} + 1) \leq 2$$

as soon as $c \geq a_0 \log r(I_j)^{-1}$ for some $a_0 > 0$. For all $j \leq k$ and $k \leq k_1k_n(\beta)$, one thus obtains

$$P_0[|\mathbb{G}_n(f_0I_{Ij})| > \epsilon] \lesssim \exp(-\kappa_1 \sqrt{n} \log r(I_j)) \leq \exp(-\kappa_1 \sqrt{n} \log r(I_j)) \leq \exp(-\kappa_1 \sqrt{n} \log r(I_j)) \lesssim \exp(-\kappa_1 \sqrt{n} \log r(I_j)) \leq e^{\kappa_1 \sqrt{n} \log r(I_j)}.$$

Note that by definition of a_n and a_0, $nr(I_j) \gtrsim n^{1-2\beta/(2\beta+1)}$ for some δ arbitrarily small. Choose $t = t_0r(I_j)^{1/2}$, $t_0 > 0$, then with probability smaller than $e^{-\kappa_2 n^{1-\delta'}/(2\beta+1)}$ for some $\delta' > 0$ small and $\kappa_2 > 0$,

$$\mathbb{G}_n(f_0(f_{\omega,k} - f_{\omega,k})) \lesssim \sum_{j=1}^{k} 1_{r(I_j) > r_n/n} |\omega_j - \omega_j'| r(I_j)^{1/2} \lesssim \sqrt{k} \|\omega - \omega'\|_{2,r} = o(1)$$

which implies that uniformly over A_n

$$R_n(f_t, f_0) - R_n(f, f_0) = o_p(1)$$

and assumption A is verified.

We then need only prove (2.14) in the main text [17]. To do so we first make the change of variables

$$\omega_t = \omega - t\omega_[k], \quad \omega_0_[k] = (\omega_0^j, j = 0, \ldots, 2a_nk)$$

38
and compare \(\ell_{y_0}(f_{\omega,t}) - \ell_{y_0}(f_{\omega}). \)

\[
\ell_{y_0}(f_{\omega,t}) - \ell_{y_0}(f_{\omega}) = -tn^{-1/2} \sum_{i=1}^{n} \epsilon_i(f_0 - f_{\omega}(Y_i)) + \frac{t^2}{n} \sum_{i=0}^{n-1} (f_0(Y_i) - f_{\omega}(Y_i))^2
+ \frac{t}{\sqrt{n}} \sum_{i=0}^{n-1} (f_0(Y_i) - f_{\omega}(Y_i))(f_\omega - f_0)(Y_i)
= -tn^{-1/2} \sum_{i=1}^{n} \epsilon_i(f_0 - f_{\omega}(Y_i)) + \frac{t^2}{2} \|f_0 - f_{\omega}\|^2
+ \sqrt{nt} \int_{\mathbb{R}} \left(f_0(y) - f_{\omega}(y) \right)(f_\omega - f_0)(y)dy
+ \frac{t^2}{2\sqrt{n}} G_n(f_0 - f_{\omega}) + tG_n((f_0 - f_{\omega})(f_\omega - f_0)).
\]

Using the above computations, on \(A_n \)

\[
G_n(f_0(Y_i) - f_{\omega}(Y_i)) = o_p(1)
\]

uniformly in \(k \) and

\[
G_n((f_0 - f_{\omega}(Y_i))(f_\omega - f_0)) = G_n((f_0 - f_{\omega}(Y_i))(f_\omega - f_{\omega}(Y_i))) + o_p(1)
= \sum_{j=1}^{2a_nk} (\omega_j - \omega_j^0) G_n((f_0 - f_{\omega}(Y_i)) I_{t_j}) = o_p(1)
\]

uniformly in \(k \) and over \(A_n \). Combining these results with condition (5.3) in the main text \cite{17} concludes the proof of Theorem 5.1. \(\square \)