
2014 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 21–24, 2014, REIMS, FRANCE

KERNEL LEARNING AS MINIMIZATION OF THE SINGLE VALIDATION ESTIMATE

Maxime Sangnier, Jérôme Gauthier∗

CEA, LIST
91191 Gif-Sur-Yvette, FRANCE
{first name}.{last name}@cea.fr

Alain Rakotomamonjy

University of Rouen
76800 Saint-Etienne du Rouvray, FRANCE

alain.rakoto@univ-rouen.fr

ABSTRACT

In order to prevent overfitting in traditional support vector kernel
learning, we propose to learn a kernel (jointly with the cost parame-
terC) by minimizing the single validation estimate with a sequential
linear filter algorithm. Additionally, we introduce a simple heuristic
in order to improve risk estimation, which randomly swaps several
points between the validation and the training sets. Contrarily to
previous works, which use several validation sets to improve risk es-
timation, our strategy does not increase the number of optimization
variables. This is easily done thanks to Karasuyama and Takeuchi’s
multiple incremental decremental support vector learning algorithm.
A synthetic signal classification problem underlines the effective-
ness of our method. The main parameters of the learned kernel are
the finite impulse responses of a filter bank.

Index Terms— Support vector machine, kernel learning, com-
plementary constraint, bilevel optimization, filter bank.

1. INTRODUCTION

In statistical learning, kernel methods are popular and successful
tools [1]. In particular, support vector learning has been applied
with great success to classification tasks. Such performance led re-
searchers to build feature selection algorithms upon support vector
machine-based criteria [2]. In parallel to feature selection, a wide
interest has been devoted to kernel learning (for the same purpose),
i.e. the way to jointly learn a classifier as a linear functional, and the
space in which the latter lies [3, 4]. While kernel methods are usually
based on convex optimization (thus theoretically and computation-
ally tractable), kernel learning is generally embodied by non-convex
and time-consuming optimization problems. The last but not least
drawback of this kind of method is to overfit the training data when
there are many kernel parameters.

Kernel learning has been widely studied in the 2000’s. The con-
tributions can be clustered in different manners. For instance, we
may distinguish the direct, target and generalized approaches. The
first ones learn a kernel by minimizing a criterion based on the struc-
tural risk of misclassification [5, 6]. They are direct extensions of
support vector principles to kernel learning and have been proved
to be quite efficient for special applications [6]. The target meth-
ods learn a kernel by fitting it with an ideal one [7]. Thus, they
are composed of two stages (first fitting the kernel and then learning
the classifier). This is advantageous compared to direct approaches,
which generally solve a higher dimensional problem [5] or solve

∗Thanks to the Direction Générale de l’Armement, French Ministry of
Defense, for funding.

many quadratic problems in an inner loop [6]. Eventually, gener-
alized approaches focus on minimizing a generalization bound of
the misclassification error [8, 9, 10]. These methods are aimed at
preventing overfitting while learning a support vector kernel. While
some of the direct and target methods have been proved to be based
on convex optimization [6, 7], all the generalized approaches solve
locally a non-convex problem.

All the previously mentioned approaches are very specific to
kernel methods. They take advantage from the particular structure
of the support vector problem, which is based on a positive-definite
similarity matrix and which sparsely selects discriminative vectors.
On the contrary, a more general method has been introduced for the
problem of model selection for support vector learning in [11, 12].
The principle of these latter works is to tackle the problem of multi-
ple validation estimate minimization as a bilevel program. This cri-
terion, which is the most common instance of generalization bound,
is shown in [11, 12] to be simple to cast as a minimization problem
and to be efficiently solved by off-the-shelf solvers. In compari-
son, tackling the same problem with a grid search (i.e. performing a
cross-validation) would be prohibitive.

Outline In this study, we propose to deal with the single valida-
tion estimate minimization with an `1-regularized support vector
machine. Our work is aimed at providing a new kernel learning
method, which prevents overfitting when there are many kernel pa-
rameters compared to the size of the training dataset. Moreover, in
order to improve the estimation without increasing the number of
variables (which occurs when several validation sets are used, like
in [11, 12]), we propose a simple heuristic. This one consists in
swapping several points between the validation and the training sets
during the descent optimization. Additionally, these swaps are made
efficient by using incremental techniques of support vector classifi-
cation [13]. This makes our approach a little more specific to ker-
nel learning than [11, 12]. Eventually, our approach demonstrates
promising results on a signal classification problem based on a syn-
thetic toy dataset. In this numerical experiment, the kernel that we
design is built upon a filter bank for which finite impulse responses
are not known beforehand and have thus to be learned.

Relation to prior work The approach presented in this paper is
related to several previous works. The first one is [8], in which the
authors minimize the single validation estimate for an `2-regularized
support vector machine. On the contrary, we address the problem
with an `1-regularized classifier. [9] extends the method from [8]
to multiple validation sets, `1-regularized support vector machines
and focuses on building an efficient (i.e. quick) gradient-based al-
gorithm. This approach is clearly among the state of the art in gen-

978-1-4799-3694-6/14/$31.00 c©2014 IEEE

eralized kernel learning and we do not try to challenge it. On the
contrary, we aim to remind that other ways to minimize the multiple
validation estimate exist. For small datasets, for which overfitting
occurs, our method is not long to train, even if we use basic tech-
niques to compute the gradient of the kernel (which is needed to
linearize the constraints of our learning problem).

Due to techniques from bilevel optimization, our approach has
a similar flavor to that work published in [11, 12]. The particularity
of our approach lies in not increasing the number of optimization
variables by using several validation sets (and then several classi-
fiers). Furthermore, we tried to demonstrate that techniques from
bilevel optimization are not just easy to use and workable because of
the existence of off-the-shelf optimization software (as the ones used
in [11, 12]), but are also accessible to implement and can be made
efficient by using tricks, like the proposed heuristic.

2. KERNELIZED FRAMEWORK FOR CLASSIFICATION

2.1. Support vector machine

Let
(

(xi, yi)
)
i∈S

be a dataset, where each data xi comes from a

compact set and each label yi is either +1 or −1 (we consider a
biclass problem). Let also {V, T } be a partition of the set of indexes
S. In the whole paper, T describes the training dataset and V the
validation one.

Let Hθ be a reproducing kernel Hilbert space (generated by a
kernel kθ) parametrized by a d-dimensional vector θ and C a cost
parameter (C ≥ 0). The structural risk of misclassification [14] is
defined by:

JC,θ(f, b)
def
=

1

2
‖f‖2Hθ + C

∑
i∈T

Λ(f(xi) + b, yi),

where f is a functional from Hθ and b is a bias from R. Λ is a cost
function, which reflects the discrepancy between the predicted value
f(xi) + b and the true label yi.

Given some parameters C and θ, a support vector machine is
an algorithm that learns the prediction function x 7→ f(x) + b by
solving the variational problem:

minimize
f∈Hθ ,b∈R

JC,θ(f, b).

Commonly, we use the non-differentiable hinge loss function

Λ: (a, b) ∈ R2 → max (0, 1− ab) ∈ R+,

which promotes a sparse selection of support vectors. With this loss
function, the learning problem becomes:

minimize
f∈Hθ ,b∈R,ξ∈R|T |

1
2
‖f‖2Hθ + C1T ξ

s.t. ∀i ∈ T , 1− ξi − yi(f(xi) + b) ≤ 0
0 4 ξ,

(1)

where 1 stands for the all-one vector. Let α and λ from R|T | be
respectively the Lagrangian vectors for the first and the second con-
straint of (1). According to the Karush-Kuhn-Tucker conditions,

(f, b, ξ) is a solution of (1) iff for some α and λ

∀i ∈ T , 1− ξi − yi(f(xi) + b) ≤ 0
0 4 ξ
0 4 α
0 4 λ
∀i ∈ T , λiξi = 0
∀i ∈ T , (1− ξi − yi(f(xi) + b))αi = 0
f =

∑
i∈T αiyikθ(xi, ·)

αTyT = 0
λ = C1−α,

(2)

where yT is the vector of training labels.

2.2. Kernel learning

Problem (1) is easily solvable if the trade-off parameter C and the
kernel parameter θ are known beforehand [15, 16]. Yet it is never the
case. Hence, when θ has at most two components, these parameters
are usually chosen by cross-validation. A more general approach
is to learn the kernel parameter θ by solving a variational problem
[17, 5] and to perform a cross-validation in order to find the trade-off
parameter C. So far, the easiest way to do so is to tackle the problem

minimize
θ∈Rd

(
min

f∈Hθ ,b∈R
JC,θ(f, b)

)
+ ρ(θ)

s.t. κ(θ) ≤ 0

by a first-order approach (ρ and κ being respectively a regularization
and a constraint function from Rd to R). This turns out to be one of
the most efficient way to learn a kernel when the latter lies in the
smallest convex set containing some predefined kernels [6].

2.3. Filter bank kernel

As we are interested in signal classification, we consider a process-
ing line built upon three consecutive stages: i) filtering by a filter
bank with all the decimation factors set to 1; ii) pooling with an
energy-based function that partitions the filtered signal into a set of
non-overlapping segments (of length w) and outputs the energy of
each such sub-signal; iii) mapping with a Gaussian kernel of param-
eter γ (γ ≥ 0). Eventually, the kernel that we consider is

k : (x1,x2) 7→ exp
(
−γ‖P (T (x1))− P (T (x2))‖22

)
,

where x1 and x2 are signals and the time-frequency transformation
performed by the filter bank is given by the function T (∗ being the
convolution operation) based on m finite impulse response filters
hk:

T (x)
def
= [. . . ,hk ∗ x, . . .]T1≤k≤m ,

and the general pooling operator is P :

P (T (x))
def
=
[
. . . , P̃ (hk ∗ x), . . .

]T
1≤k≤m

,

with the core function P̃ , which returns the local energy of a filtered
signal x̃ def

= hk ∗ x, defined by:

P̃ (x̃)
def
=

[
. . . ,

w∑
k=1

|x̃iw+k|2, . . .

]T
0≤i≤

⌊
|x̃|
w

⌋ .

With these definitions, the kernel parameter θ is
θ

def
= (γ,h1

T , . . . ,hm
T)T . Following [6, 3], a first approach

to learn such a kernel would be to find a local minimum to the
problem

minimize
θ∈Rd

(
min

f∈Hθ ,b∈R
JC,θ(f, b)

)
s.t. 0 ≤ γ

‖h1‖22 + · · ·+ ‖hm‖22 ≤ 1.

(3)

The first constraint ensures the positive-definiteness of the kernel k
and the second excludes a degeneracy. We could have used other
kind of kernels, and especially other pooling functions P̃ . Never-
theless, in order to be suitable to our method, the kernel must be
differentiable with respect to all its parameters.

3. KERNEL LEARNING THROUGH BILEVEL
OPTIMIZATION

3.1. Problem formulation

Ideally, the best way to prevent overfitting is to minimize the true risk
of the classifier. Since this risk is unavailable, we choose to minimize
an estimate of it computed as the empirical error on a validation set
V (this is the single validation estimate):

minimize
C∈R+,θ∈Rd

∑
i∈V Λ(fθ(xi) + bθ, yi)

s.t. (fθ, bθ) ∈ argmin
f∈Hθ ,b∈R

JC,θ(f, b).
(4)

In order to solve problem (4), we circumvent the variational con-
straint by substituting the lower-level problem (which is a standard
support vector learning) by its Karush-Kuhn-Tucker optimality con-
ditions (2):

minimize
C,θ,b,ξ,α

∑
i∈V Λ(f(xi) + b, yi)

s.t. 0 4 ξ
0 4 α 4 C1
αTyT = 0
f =

∑
i∈T αiyikθ(xi, ·)

∀i ∈ T

 1− ξi − yi(f(xi) + b) ≤ 0
(C − αi)ξi = 0
(1− ξi − yi(f(xi) + b))αi = 0.

(5)

Problem (5) is not only nonlinearly constrained, but also nonconvex.
This is due to the last two constraints, also known as complementar-
ity constraints, which give rise to both theoretical and computational
anomalies [11]. Several proposals can deal with those constraints
(like branch and bound or penalty methods [18]) and particularly
relaxation:

∀i ∈ T
{

(C − αi)ξi ≤ ε
(yi(f(xi) + b) + ξi − 1)αi ≤ ε,

where ε is a positive tolerance threshold. Note that we do not need
absolute values since each part of the products is non-negative. At
this point, the only issue to alleviate is the non-differentiability of the
hinge loss Λ in the objective function, which is easily done by intro-
ducing a slack vector µ. Before writing down the final optimization
problem, let us introduce the matrices of training labels Y T

+
def
=

Diag ((yi)i∈T) and of validation labels Y V
+

def
= Diag ((yi)i∈V),

as well as the positive-definite kernel matrices for the training data
KT
θ +

def
= (kθ(xi,xj))i,j∈T and for the validation data KV

θ
def
=

(kθ(xi,xj))i∈V,j∈T . With these definitions, the problem to solve
is:

minimize
C,θ,µ,b,ξ,α

1Tµ

s.t. 0 ≤ C
1− µ− Y V

+ (KV
θ Y

T
+ α+ b1) 4 0

0 4 µ
1− ξ − Y T

+ (KT
θ +Y

T
+ α+ b1) 4 0

0 4 ξ
0 4 α 4 C1
αTyT = 0

∀i ∈ T
{

(C − αi)ξi ≤ ε
(Y T

+ (KT
θ +Y

T
+ α+ b1) + ξ − 1)iαi ≤ ε.

(6)

3.2. Improving risk estimation

Even though the single validation estimate is unbiased and if its vari-
ance decreases with the size of the validation set [8], the size of the
latter is limited in practice and even small in our experiments. In-
deed overfitting usually occurs for small training datasets. In order
to overcome that drawback, the cross-validation method minimizes
the average empirical error on different non-overlapping validation
sets, using a grid search strategy. This heuristic improves risk es-
timation but forces to learn many more classifiers. In [11, 12], the
authors solve a variant of (6) with three validation sets, which seems
to be an acceptable trade-off between estimation and computational
time.

In this work, we introduce a novel heuristic to improve risk esti-
mation without increasing the number of optimization variables (i.e.
the number of learned classifiers). First, note that problem (6) will
be solved by an iterative algorithm. Then, our heuristic consists in
swapping several points between the validation and the training sets
during the descent. In this way, the single learned classifier is evalu-
ated on several validation sets and may not overfit. In practice, at a
given iteration, we apply the swap procedure given by algorithm 1.
This operation is repeated at a constant interval of iterations.

Data: a partition {V, T } of S, a number n of points to swap.
Result: a new partition {V∗, T ∗} of S.

1 V† ← random sample of size n from V;
2 T † ← random sample of size n from T ;
3 V∗ ←

(
V\V†

)
∪ T †;

4 T ∗ ←
(
T \T †

)
∪ V†;

Algorithm 1: Swap procedure.

To solve problem (6), we will decrease 1Tµwhile keeping satis-
fied the Karush-Kuhn-Tucker optimality conditions for the classifier
(which are given in the constraints). Reciprocally, we would like to
keep these constraints satisfied when swapping points between the
evaluation and the training sets. Note that, when swapping points,
the model parameters C and θ are frozen. Besides, when knowing
the new partition {V∗, T ∗}, the vectors µ and ξ are given by:

µ = max
(

0,1− Y V∗
+ (KV∗

θ Y T ∗
+ α+ b1)

)
ξ = max

(
0,1− Y T ∗

+ (KT ∗
θ +Y

T ∗
+ α+ b1)

)
.

The main difficulty is for the training variables α and b. As sug-
gested in algorithm 1, the swap can be split into two simultane-
ous steps: removing some points T † from T , and adding some

other points V†. This can be done thanks to Karasuyama and
Takeuchi’s multiple incremental and decremental learning algo-
rithm [13], which provides us with the variables α and b at the new
equilibrium. Let us quickly review the core of the algorithm.

A dual of learning problem (1) is the minimax formulation

maximize
b∈R

minimize
α∈R|T |, 04α4C1

G(α, b), (7)

with

G(α, b)
def
=

1

2
αTY T

+ K
T
θ +Y

T
+ α− 1Tα+ byT

Tα.

Expression (7) is a saddle-point problem for which optimality is
given by the Karush-Kuhn-Tucker conditions:

∀i ∈ T ,
gi

def
=

∂G

∂αi
(α, b)

= yi (f(xi) + b)− 1

 ≥ 0 if αi = 0
= 0 if 0 < αi < C
≤ 0 if αi = C

∂G

∂b
(α, b) = yT

Tα = 0.

(8)
First, consider that the points we want to add to the training set are
zero-weighted: αV† = 0. Secondly, let us keep in V† only the
indexes of points that violate the optimality conditions (8) (the others
can move to T without disrupting the equilibrium) and in T † only
the indexes of points that support the model (i.e. αi > 0). Let us
now partition the training dataset T into

I def
=
{
i ∈ T \T †, yi (f(xi) + b) < 1

}
, αi = C

M def
=
{
i ∈ T \T †, yi (f(xi) + b) = 1

}
, 0 ≤ αi ≤ C

O def
=
{
i ∈ T \T †, yi (f(xi) + b) > 1

}
, αi = 0.

I, M and O respectively describe the points inside, on the border
and outside the margin (apart from the ones we want to remove).
Note that, ifQ+

def
= Y T

+ K
T
θ +Y

T
+ , then gi is expressed by

gi =
∑

j∈I∪M∪T †

Qijαj + yib− 1.

Let ∆ denote the amount of change of each variable (we assume
it to be very small for now, such that points do not cross the frontiers
of I, M and O). Then, to keep the optimality conditions given in
(8), any change must satisfy the equalities

∀i ∈M, ∆gi =
∑

j∈MQij∆αj +
∑

j∈T † Qij∆αj

+
∑

j∈V† Qij∆αj + yi∆b = 0

yM
T∆αM + yT †

T∆αT † + yV†
T∆αV† = 0

(9)

and the inequalities

∀i ∈ I, gi + ∆gi < 0
∀i ∈ O, gi + ∆gi > 0
∀i ∈M∪ T † ∪ V†, 0 ≤ αi + ∆αi ≤ C.

(10)

Moreover, the points to add must still violate the equilibrium (other-
wise they should have been added to I,M or O):

∀i ∈ V†, gi + ∆gi < 0. (11)

Now, if we choose the following directions of change

∆αV† = η (C1−αV†) , ∆αT † = −ηαT † ,

where η is a non-negative step length, then any change ∆αV† and
∆αT † impacts b and αM according to[

∆b
∆αM

]
= ηM

[
C1−αV†
−αT †

]
,

where M is given by the two equalities in (9). The step length η is
computed as the biggest one satisfying the inequalities from (10) and
(11). This maximum step length matches with a point that moves
across I, M, O or V†. Thus, the algorithm in [13] updates these
sets and then finds a new step length η. These two operations are
repeated until V† is empty and αT † = 0.

3.3. Filter algorithm

In order to solve problem (6), we implemented a sequential linear
programming filter method (see algorithm 2) [19]. Filter approaches
were introduced in response to the difficulty of choosing suitable
regularization parameters in penalty methods [20]. Their principle is
close to Pareto multi-objective optimization, trying to minimize both
the objective function and a measure of constraint violation, but with
a priority on the latter, in that it is essential to find a solution that
corresponds to a feasible point of (6).

In order to understand filter methods, we need to explain the
concept of domination. Let two points generated during the process
of solving problem (6) and represented by two pairs (h, obj), where
h is a measure of constraint violation and obj is the current objective
value. We say that (h1, obj1) dominates (h2, obj2) iff (h1, obj1) 4
(h2, obj2), i.e. there is no reason to prefer (h2, obj2) compared to
(h1, obj1). A filter is a list of pairs (hk, objk) such that no pair
dominates any other.

On every iteration, we perform a new step by solving a linearized
version of (6) within a trust region of size ρ (this is the sequential
linear part of the algorithm). This is made possible by introducing
the additional constraints (12), where ∆ still denotes the amount of
change of each variable:

‖∆C‖∞ ≤ ρ, ‖∆θ‖∞ ≤ ρ, ‖∆µ‖∞ ≤ ρ,
‖∆b‖∞ ≤ ρ, ‖∆ξ‖∞ ≤ ρ, ‖∆α‖∞ ≤ ρ. (12)

If the resulting pair (h, obj) is acceptable to the filter (i.e. it is not
dominated by any of the entries in the filter), then we linearly update
the optimization variables as well as the filter (adding the new pair
(h, obj) and removing any entries that are dominated by it) and the
trust region radius ρ (increasing it by two). On the other hand, if the
pair is not acceptable, then we reject it, reduce the trust region radius
ρ by half and solve the linear program again.

4. NUMERICAL EXPERIMENTS

The algorithm proposed in this paper has been evaluated with a toy
dataset. This one is made up of two classes based on different pat-
terns (figure 1). The first pattern is a sine curve with normalized
frequency that varies around 0.078 (10 Hz for a 128 Hz sampling
rate). The second one is another sine curve with higher normalized
frequency, which varies around 0.234 (30 Hz). Variable frequen-
cies are the first kind of intraclass distortions that characterize our
toy dataset. The second kind of intraclass discrepancies introduced
is a slight random time-shift. In the end, a random colored noise is
added to each signal and the latter is tapered with a Gaussian win-
dow (which also follows the random time-shift). The colored noise
comes from a Gaussian white noise, which is randomly filtered by
either [1,−2, 1], [0, 1,−1] or [1, 0, 1]. This noise is stationary at the

Data: a training dataset (xi, yi)i∈S , a number n of points to
swap and an interval N of iterations.

Result: the model parameters C and θ.

1 Randomly partition S in {V, T };
2 Initialize variables C and θ;
3 Initialize other variables with a single batch support vector

learning;
4 Initialize the trust region radius ρ;
5 while improvement is possible do
6 obj ← solve a linearized version of (6) with the

additional trust region constraints (12);
7 if the model is infeasible then
8 Reinitialize variables (apart from C and θ) with a

single batch support vector learning;
9 else

10 h← measure of constraint violation;
11 if (h, obj) is acceptable to the filter then
12 Update linearly the optimization variables;
13 ρ← 2ρ;
14 Update the filter;
15 if N iterations elapsed from the last swap then
16 Swap n points between V and T according

to algorithm 1;

17 else
18 ρ← ρ

2
;

Algorithm 2: kernel learning algorithm.

scale of the signal but non-stationary at the scale of the dataset (con-
sidering that the dataset comes from the segmentation of a single
long time signal).

0.00 1.00
-1.00

1.00

Time

M
ag

ni
tu

de

(a) Pattern 1.

0.00 1.00
-1.00

1.00

Time

M
ag

ni
tu

de

(b) Pattern 2.

Fig. 1: Generative patterns of the toy problem. Each class of the
dataset is built upon a pattern, which is randomly shifted and added
to a colored noise.

In this experiment, we use the kernel described in section 2.3
in unison with 2 filters of length 32 and 4 segments in the pooling
(w = 32). The confronted methods are i) the one presented in this
paper1 (“Our method with swap”), ii) the same without the swap
heuristic (“Our method without swap”), iii) the common approach
(3) solved with a projected gradient descent (“Large margin”) and iv)
a support vector machine with a filter bank kernel with two bandpass
filters on the generative frequencies of the patterns (“Oracle”). The
oracle somehow indicates the best results that can be achieved by

1Like in (3), we also add the constraints 0 ≤ γ and ‖h1‖22 + · · · +
‖hm‖22 ≤ 1 to keep the kernel positive-definite and to exclude degeneracies.

learning methods in this context. For the bilevel approaches (with
and without swap), 60% of the training dataset is used to actually
train the classifier, and 40% to validate it. In the last two techniques,
the unlearned parameters (respectivelyC and (C, γ)) are determined
by a 5-fold cross-validation strategy. For bilevel and large margin
approaches, C and γ are initialized to 1, and the filter bank to the
simple low-pass [1

2
, 1
2
, 0, . . . , 0]T and high-pass [1

2
,− 1

2
, 0, . . . , 0]T

filters. All the methods are learned with a small random training
dataset (80 signals) and evaluated on another random test set. These
steps are repeated 10 times so as to produce statistics.

The average classification accuracies on figure 2 show that our
method is close to the oracle for medium and high signal-to-noise ra-
tio (SNR) and performs better than the other approaches. Learning
the parameters by solving (3) seems to overfit at any level of noise.
Note also that the single validation estimate overfits for medium
SNR. Figure 3 shows that our method is clearly faster than all the
others (apart from the cross-validation of the oracle). Eventually,
unreported results prove that, on this toy example, all the methods
generalize as well when increasing the size of the training dataset.

-18 -2-16 -14 -12 -10 -8 -6 -4
0.40

1.00

0.50

0.60

0.70

0.80

0.90

SNR (dB)

A
ve

ra
ge

ac
cu

ra
cy

Our method with swap

Our method without swap

Large margin

Oracle

Fig. 2: Accuracy with respect to the SNR.

-18 -2-16 -14 -12 -10 -8 -6 -4
0

30

5

10

15

20

25

SNR (dB)

A
ve

ra
ge

tr
ai

ni
ng

tim
e

(m
in

ut
es

)

Our method with swap

Our method without swap

Large margin

Oracle

Fig. 3: Training time with respect to the SNR.

5. CONCLUDING REMARKS

On the premise that for small training datasets, kernel methods tend
to overfit, we tried to minimize the most common generalization
bound for support vector learning (i.e. the multiple validation es-
timate) taking into account the continuous nature of the parameters.
The main contribution of this paper is to introduce a simple heuris-
tic (made efficient thanks to recent advances in incremental support
vector machines) in order to emulate several validation sets while
considering only one at a time. The numerical experiments presented
in this paper prove that for medium SNR, our approach is valuable
compared to learning a kernel by only minimizing the structural risk
or by using a single validation set.

6. REFERENCES

[1] J. Shawe-Taylor and N. Cristianini, Kernel methods for pattern
analysis, Cambridge University Press, 2004.

[2] A. Rakotomamonjy, “Variable selection using SVM-based cri-
teria,” Journal of Machine Learning Research, vol. 3, pp.
1357–1370, 2003.

[3] R. Flamary, B. Labbé, and A. Rakotomamonjy, “Large margin
filtering for signal sequence labeling,” in IEEE International
Conference on Acoustics, Speech and Signal Processing, 2010.

[4] F. Yger and A. Rakotomamonjy, “Wavelet kernel learning,”
Pattern Recognition, vol. 44, pp. 2614–2629, 2011.

[5] G.R.G. Lanckriet, N. Cristianini, P.L. Bartlett, L. El Ghaoui,
and M.I. Jordan, “Learning the kernel matrix with semidefinite
programming,” Journal of Machine Learning Research, vol. 5,
pp. 27–72, 2004.

[6] A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet,
“SimpleMKL,” Journal of Machine Learning Research, vol.
9, pp. 2491–2521, 2008.

[7] C. Cortes, M. Mohri, and A. Rostamizadeh, “Algorithms for
learning kernels based on centered alignment,” Journal of Ma-
chine Learning Research, vol. 13, pp. 795–828, 2012.

[8] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee,
“Choosing multiple parameters for support vector machines,”
Machine Learning, vol. 46, pp. 131–159, 2002.

[9] S.S. Keerthi, V. Sindhwani, and O. Chapelle, “An efficient
method for gradient-based adaptation of hyperparameters in
SVM models,” in Advances in Neural Information Process-
ing Systems (NIPS). 2006.

[10] C. Cortes, M. Kloft, and M. Mohri, “Learning kernels using
local rademacher complexity,” in Advances in Neural Informa-
tion Processing Systems (NIPS). 2013.

[11] K.P. Bennett, J. Hu, X. Ji, G. Kunapuli, and J.-S. Pang, “Model
selection via bilevel optimization,” in International Joint Con-
ference on Neural Networks, 2006, pp. 1922–1929.

[12] G. Kunapuli, K.P. Bennett, Jing Hu, and Jong-Shi Pang, “Clas-
sification model selection via bilevel programming,” Optimiza-
tion Methods and Software, vol. 23, pp. 475–489, 2008.

[13] M. Karasuyama and I. Takeuchi, “Multiple incremental decre-
mental learning of support vector machines,” IEEE Transac-
tions on Neural Networks, vol. 21, pp. 1048–1059, 2010.

[14] V.N. Vapnik, Statistical learning theory, Wiley, 1998.

[15] S. Canu, Y. Grandvalet, V. Guigue, and A. Rakotomamonjy,
“SVM and kernel methods matlab toolbox,” Perception Sys-
tèmes et Information, INSA de Rouen, Rouen, France, 2005.

[16] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support
vector machines,” ACM Transactions on Intelligent Systems
and Technology, vol. 2, no. 3, pp. 27, 2011.

[17] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio,
and V. Vapnik, “Feature selection for SVMs,” in Advances in
Neural Information Processing Systems (NIPS), 2000.

[18] B. Colson, P. Marcotte, and G. Savard, “An overview of bilevel
optimization,” Annals of Operations Research, vol. 153, no. 1,
pp. 235–256, 2007.

[19] R. Fletcher, N. I. M. Gould, S. Leyffer, P. L. Toint, and
A. Wächter, “Global convergence of a trust-region SQP-filter
algorithm for general nonlinear programming,” SIAM Journal
on Optimization, 2002.

[20] R. Fletcher, “The sequential quadratic programming method,”
in Nonlinear Optimization. Springer Berlin Heidelberg, 2010.

