Chapter 5: Hypothesis testing

Tabea Rebafka

October 2018

Master AIMS 2018–19
Outline

1. Definitions

2. Construction of tests

3. Tests for the normal distribution
Problem

- Let $\{P_\theta, \theta \in \Theta\}$ be a statistical model and consider two disjoint subsets Θ_0 and Θ_1 of Θ.
- We observe a realization x of the distribution P_θ with unknown θ.
- We want to decide whether $\theta \in \Theta_0$ or $\theta \in \Theta_1$.

Example: Tossing a coin

- Based on the outcomes of n tosses, we would like to decide whether the coin is a fair coin or not.
- Mathematically speaking: Is $p = \frac{1}{2}$ or $p \neq \frac{1}{2}$?
Hypotheses

- $H_0 : \theta \in \Theta_0$ is called the **null hypothesis**.
- $H_1 : \theta \in \Theta_1$ is called the **alternative hypothesis**.
- The null hypothesis (or the alternative) is **simple** if $\Theta_0 = \{\theta_0\}$ (or $\Theta_1 = \{\theta_1\}$). Otherwise the hypothesis is **multiple**.
A test of hypothesis \(H_0 \) versus \(H_1 \), is a (measurable) function \(\varphi \) that associates to each possible dataset \(x \) a decision.

More precisely, \(\varphi : \mathcal{X} \mapsto \{0, 1\} \) (where \(\mathcal{X} \) is the observation space) such that

- \(\varphi(X) = 0 \) means that we conserve the null hypothesis \(H_0 \) or do not reject \(H_0 \)
- \(\varphi(X) = 1 \) means that we reject \(H_0 \) or decide/accept \(H_1 \).

The critical region of test \(\varphi \) is defined by

\[
R_\varphi = \{ x \in \mathcal{X} : \varphi(x) = 1 \}.
\]

Each test is completed characterized by it critical region.
In general, the critical region R_φ can be naturally written by using some test statistic $T(X)$ and a set R such that

$$R_\varphi = \{ x \in \mathcal{X} : T(X) \in R \}.$$

Most often, we have

$$R_\varphi = \{ x \in \mathcal{X} : T(X) > c \} \text{ or } R_\varphi = \{ x \in \mathcal{X} : T(X) < c \},$$

for some constant $c \in \mathbb{R}$.
Definitions V

When we decide between H_0 and H_1, there are two ways to make a mistake:

<table>
<thead>
<tr>
<th>Error types</th>
<th>Description</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1 error</td>
<td>We reject H_0 while it is true.</td>
<td>$\alpha(\theta_0) = \mathbb{P}_{\theta_0}(T(X) \in R) \quad \forall \theta_0 \in \Theta_0$.</td>
</tr>
<tr>
<td>Type 2 error</td>
<td>We conserve H_0 while it is false.</td>
<td>$\beta(\theta_1) = \mathbb{P}_{\theta_1}(T(X) \notin R) \quad \forall \theta_1 \in \Theta_1$.</td>
</tr>
</tbody>
</table>
Significance level

- The **size of the test** α^* is defined as

$$\alpha^* = \sup_{\theta_0 \in \Theta_0} \alpha(\theta_0).$$

- Let $\alpha \in]0, 1[$ be fixed. The test has **(significance) level** α if $\alpha^* \leq \alpha$.
Definitions VII

Definition p-value

For every $\alpha \in]0, 1[$, let $R_\alpha = \{x \in \mathcal{X} : T(x) \in R_\alpha\}$ be a test with level α of H_0 versus H_1.

Then for a given observation x, the p-value is the smallest significance level at which H_0 is rejected. That is, the p-value associated to x is defined by

$$p(x) = \inf\{\alpha \in]0, 1[: T(x) \in R_\alpha\}.$$

Interpretation of p-values:

- $p(x) < 0.01$: H_0 is rejected at all usual significance levels. That is the test is in favour of H_1 and we say that the test is **significant**.
- $p(x) > 0.1$: H_0 cannot be rejected. Either H_0 is true or we do not have enough information to see from the data that H_0 is false.
Power

- The **power of a test** is the probability to reject H_1 correctly. The power is defined as

\[\pi(\theta_1) = \mathbb{P}_{\theta_1}(T(X) \in R), \quad \theta \in \Theta_1. \]

- Let φ_1 and φ_2 be two tests of size α and power π_1 and π_2, respectively. Test φ_1 is **more powerful** than test φ_2 if

\[\pi_1(\theta) \geq \pi_2(\theta) \quad \forall \theta \in \Theta_1. \]

- Let φ^* be a test of size α. We say that the test φ^* is **uniformly most powerful** (UPP) if φ^* is more powerful than any other test of size α.

Using estimators

If an estimator $\hat{\theta}$ of θ is known, a natural test consists in rejecting H_0 when $\hat{\theta}$ takes values “close” to Θ_1.
Construction of tests II

Exercise

1. Let \(X_1, \ldots, X_n \) be i.i.d. observations from the normal distribution \(\mathcal{N}(\mu, \sigma^2) \) with unknown \(\mu \in \mathbb{R} \) and known \(\sigma^2 > 0 \).

2. Let \(\mu_0 \) be given.

Consider the hypotheses

\[
H_0 : \mu = \mu_0 \quad \text{versus} \quad H_1 : \mu \neq \mu_0.
\]

Construct a test with significance level \(\alpha \). (The test is \textit{two-sided}).

Consider the hypotheses

\[
H_0 : \mu \leq \mu_0 \quad \text{versus} \quad H_1 : \mu > \mu_0.
\]

Construct a test with significance level \(\alpha \). (The test is \textit{one-sided}).
Construction of tests III

Using confidence intervals

- Let IC_α be a confidence interval at level $1 - \alpha$ for θ.
- Then a test of size α is given by

$$\varphi(x) = 1\{\Theta_0 \cap IC_\alpha(x) = \emptyset\} = 1\{\theta_0 \notin IC_\alpha(x), \forall \theta_0 \in \Theta_0\}.$$
Definition

- Let X_1, \ldots, X_p be i.i.d. random variables with standard normal distribution $\mathcal{N}(0, 1)$. Then the random variable $Y = \sum_{i=1}^{p} X_i^2$ has **chi-squared distribution** with p degrees of freedom, and we denote $Y \sim \chi^2_p$.

- Let $U \sim \mathcal{N}(0, 1)$, $V \sim \chi^2_q$ two independent random variables. The **Student’s t distribution** with q degrees of freedom is the distribution of the random variable

 $$Y = \frac{U}{\sqrt{V/q}}.$$

 We write $Y \sim t_q$.

Tests for the normal distribution II

Theorem

Let X_1, \ldots, X_n be i.i.d. random variables with normal distribution $\mathcal{N}(\mu, \sigma^2)$ with $\mu \in \mathbb{R}$ and $\sigma^2 > 0$ unknown. Then

1. The sample mean \bar{X}_n has distribution $\mathcal{N}(\mu, \sigma^2/n)$.
2. The sample variance $s^2_X = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2$ verifies

$$\frac{ns^2_X}{\sigma^2} \sim \chi^2_{n-1}.$$

3. The sample mean and the sample variance are independent.
4. The statistic

$$\sqrt{n-1} \frac{\bar{X}_n - \mu}{s_X}$$

has Student’s t-distribution with $n - 1$ degrees of freedom.
Tests for the normal distribution III

Exercise

Let X_1, \ldots, X_n be i.i.d. random variables with normal distribution $\mathcal{N}(\mu, \sigma^2)$ with $\mu \in \mathbb{R}$ and $\sigma^2 > 0$ unknown.

Let μ_0 be given.

1. Consider the hypotheses

$$H_0 : \mu = \mu_0 \quad \text{versus} \quad H_1 : \mu \neq \mu_0.$$

Construct a test with significance level α. (The test is two-sided).

2. Consider the hypotheses

$$H_0 : \mu \leq \mu_0 \quad \text{versus} \quad H_1 : \mu > \mu_0.$$

Construct a test with significance level α. (The test is one-sided).